Sort by
Enhancing 3D-printed denture base resins: A review of material innovations.

The limited physical and mechanical properties of polymethyl methacrylate (PMMA), the current gold standard, necessitates exploring improved denture base materials. While three-dimensional (3D) printing offers accuracy, efficiency, and patient comfort advantages, achieving superior mechanics in 3D-printed denture resins remains challenging despite good biocompatibility and esthetics. This review investigates the potential of innovative materials to address the limitations of 3D-printed denture base materials. Thus, this article is organized to provide a comprehensive overview of recent efforts to enhance 3D-printed denture base materials, highlighting advancements. It critically examines the impact of incorporating various nanoparticles (zirconia, titania, etc.) on these materials' physical and mechanical properties. Additionally, it delves into recent strategies for nanofiller surface treatment and biocompatibility evaluation and explores potential future directions for polymeric composites in denture applications. The review finds that adding nanoparticles significantly improves performance compared to unmodified resins, and properties can be extensively enhanced through specific modifications, particularly silanized nanoparticles. Optimizing 3D-printed denture acrylics requires a multifaceted approach, with future research prioritizing novel nanomaterials and surface modification techniques for a novel generation of superior performance, esthetically pleasing, and long-lasting dentures.

Open Access
Relevant
Electrodiagnosis of polyneuropathy, organmegaly, endocrinopathy, M-protein, skin changes syndrome patients with peripheral neuropathy and potential-related risk factors

Objectives: To explore the correlation between classification and electrophysiology of polyneuropathy, organmegaly, endocrinopathy, M-protein, skin changes syndrome (POEMS)-related peripheral neuropathy (PN). Methods: We analyzed the data of 30 POEMS patients admitted to Zhongshan Hospital affiliated with Fudan University between February 2017 and February 2023. The degree of PN was determined according to its classification. All three groups of patients underwent neuroelectromyography, and the nerve conduction velocity and amplitude of the three groups were analyzed. Results: The compound motor active potentials (CMAP) of the peroneal, tibial, and ulnar nerves decreased significantly with increasing disease grade, and the motor conduction velocity of the peroneal, median, and tibial nerves decreased significantly in grade 3 compared with grade 1 and 2. The action potential of sensory nerves (sensory nerve action potential) and the conduction speed of sensory impulses (sensory conduction velocity (SCV) in the sural nerve in grade 3 were significantly lower than those in grades 1 and 2. Linear regression analysis showed that there was a linear correlation between CMAP of peroneal nerve and vascular endothelial growth factor. The SCV of the ulnar nerve significantly correlated with the course of the disease. Discussion: Neuroelectromyography can effectively evaluate the degree of PN in patients with POEMS, providing a reliable reference for further clinical treatment.

Open Access
Relevant
Design and simulation of artificial retinal stimulation IC with switched capacitor using Si nanowire optical properties.

This study introduces an approach for converting the current from a sensor into controllable voltage. To this end, a switched-capacitor structure was integrated to provide efficient current-to-voltage conversion. The generated voltage was further regulated by an operational amplifier current source, enhancing stability and precision. An n-type metal oxide semiconductor field-effect transistor structure under an H-bridge was integrated into the system to achieve fine-tuned control over current stimulation. This component contributed to voltage regulation and enabled bi-directional control of current flow, offering versatility in adjusting current amplitudes using working and counter electrodes. This dynamic control mechanism was pivotal for effectively controlling the intensity of current stimulation. We applied Verilog-A modeling to simulate the optical characteristics of Si nanowires. The proposed system efficiently converted sensor-derived current into voltage using a switched-capacitor structure. Simultaneously, the precision was enhanced via operational amplifier regulation and n-type metal-oxide-semiconductor field-effect transistor-based H-bridge control. The simulation showed a current stimulus amplitude ranging from 2 to 13 μA for a variable photocurrent of Si nanowires (Rex: 10 kΩ, pulse: 100 Hz, 1 ms). The ability to finely control current stimulation intensity holds promise for diverse applications requiring accurate and adjustable current manipulation. This study contributes to the growing field of sensor technology by offering a unique perspective on the integration of nanostructures and electronic components for an enhanced control and functionality.

Open Access
Relevant
Sugar beet (Beta vulgaris L.) leaves as natural colorant for cotton dyeing using an ecofriendly approach toward industrial progress.

In the industrial sector, vegetable residual materials have received attention in the production of bio-colorant for textile dyeing. The current research endeavor is centered on investigating the possibility of using sugar beet leaves as a natural source of dye for the purpose of dyeing cotton fabrics. Different extraction methods were utilized to isolate the bio-colorant present in sugar beet residual material, and the most favorable colorant yield was obtained using a 5% methanolic KOH solution. For optimal dyeing results, the cotton fabric performed dyeing for a duration of 45 min at a temperature of 60 °C, using a salt solution concentration of 6 g/100 mL and 50 mL of the extracted dye solution. Characterization of dye using Fourier transform infrared spectroscopy analysis confirmed the presence of quercetin in the leaf extract. For the creation of a range of color variations, mordants that were chemical in nature, such as tannic acid, iron sulfate, potassium dichromate, and copper sulfate, as well as mordants that were bio-based, such as onion peel, pomegranate peel, henna, golden shower bark, and turmeric, were employed in harmony. In comparison, the utilization of bio-mordants resulted in darker shades that exhibited enhanced color intensity and superior color fastness properties with the value of 4-5 for wash, 4 for wet rubbing, 4-5 for dry rubbing, and 4-5 for light. The findings of this study hold significant value in terms of ecofriendly waste management and contribute to advancements in the industrial sector by utilizing waste residual materials as a natural source of colorants.

Open Access
Relevant
Effects of probiotics on productive performances and serum lipid profile of broiler as substitute of antibiotics.

The present research was accomplished to characterize probiotics from broiler gastrointestinal tract (GIT) by profiling biochemical, antimicrobial, and antibiotic sensitivity properties. Eventually, probiotic potentiality was evaluated as a substitute for antibiotic supplements in broiler focusing growth performance, carcass characteristics, and serum lipid profile. Probiotic bacteria were characterized based on morphological, physiological, and several biochemical tests. Antibacterial activity against a broad spectrum of antibiotics and bacterial pathogens was detected. An in vivo trial was conducted on 40-day-old Ross 308 broiler strains during 21 days in an in vivo trial. The chicks were divided into total of five groups, a control group and four experimental groups (Antibiotic1, Antibiotic2, Probiotic1, and Probiotic2) in a completely randomized design. Probiotic was supplemented in broiler feed (2× 109 CFU/g feed) or by direct oral gavage (1× 109 CFU/chick). The variables of production performance like body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), carcass characteristics and serum lipid profile were measured. 10 probiotic bacteria were presumptively identified as Lactobacillus sp. based on the morphological, physiological, and strong resistance properties in several biochemical tests. The mixture of Lactobacillus had favorable effects on productive performance of broilers regarding BW, ADG, and FCR (p < .05) compared with chickens that had no additive or had antibiotic during overall period of in vivo trial. Additionally, noteworthy efficacy on carcass characteristics and serum lipid profile were found (p < .05) in Lactobacillus mixture fed chicken groups of in vivo trial. Mixed Lactobacillus sp. can be considered as a potential additive for broiler diet attributable to noteworthy efficacy on growth performance, carcass characteristics, and serum lipid profile. Accordingly, the research highlights the need for suitable alteration of antibiotics through probiotic characterization and proper inclusion in broiler diet.

Open Access
Relevant
Slow sound mode prediction and band structure calculation in 1D phononic crystal nanobeams using an artificial neural network.

Phononic crystals, which are artificial crystals formed by the periodic arrangement of materials with different elastic coefficients in space, can display modulated sound waves propagating within them. Similar to the natural crystals used in semiconductor research with electronic bandgaps, phononic crystals exhibit the characteristics of phononic bandgaps. A gap design can be utilized to create various resonant cavities, confining specific resonance modes within the defects of the structure. In studies on phononic crystals, phononic band structure diagrams are often used to investigate the variations in phononic bandgaps and elastic resonance modes. As the phononic band frequencies vary nonlinearly with the structural parameters, numerous calculations are required to analyze the gap or mode frequency shifts in phononic band structure diagrams. However, traditional calculation methods are time-consuming. Therefore, this study proposes the use of neural networks to replace the time-consuming calculation processes of traditional methods. Numerous band structure diagrams are initially obtained through the finite-element method and serve as the raw dataset, and a certain proportion of the data is randomly extracted from the dataset for neural network training. By treating each mode point in the band structure diagram as an independent data point, the training dataset for neural networks can be expanded from a small number to a large number of band structure diagrams. This study also introduces another network that effectively improves mode prediction accuracy by training neural networks to focus on specific modes. The proposed method effectively reduces the cost of repetitive calculations.

Open Access
Relevant