Sort by
Markov modeling on dynamic state space for genetic disorders and infectious diseases with mutations: Probabilistic framework, parameter estimation, and applications

Abstract The emergence and dynamic prevalence of genetic disorders and infectious diseases with mutations pose significant challenges for public health interventions. This study investigated the parameter estimation approach and the application of the dynamic state-space Markov modeling of these conditions. Using extensive simulations, the model demonstrated robust parameter estimation performance, with biases and mean-squared errors decreasing as sample size increased. Applying the model to COVID-19 data revealed distinct temporal patterns for each variant, highlighting their unique emergence, peak dominance, and decline or persistence trajectories. Despite the absence of clear trends in the data, the model exhibited a remarkable accuracy in predicting future prevalence trends for most variants, showcasing its potential for real-time monitoring and analysis. While some discrepancies were observed for specific variants, these findings suggest the model’s promise as a valuable tool for informing public health strategies. Further validation with larger datasets and exploration of incorporating additional factors hold the potential for enhancing the model’s generalizability and applicability to other evolving diseases.

Open Access
Relevant
Assessing the impact of information-induced self-protection on Zika transmission: A mathematical modeling approach

Abstract As per the World Health Organization’s (WHO’s) suggestions, personal protection via adopting precautionary measures is one of the most effective control aspects to avoid Zika infection in the absence of suitable medical treatment. This personal protection further can be enhanced and explored by propagating information about disease prevalence. Therefore, in this study, we wish to see the effect of information on Zika transmission by formulating a compartmental mathematical model that quantifies the effect of an individual’s behavioral response as self-protection due to information. Furthermore, the basic reproduction number was calculated using the next-generation matrix technique. The model analysis was carried out to determine the local and global stability properties of equilibrium points. In addition, the model shows the occurrence of forward bifurcation when the reproduction number crosses unity. To understand the impact of various model parameters, we conducted a sensitivity analysis using both the normalized sensitivity index and the partial rank correlation coefficient methods. Moreover, we performed numerical simulations to assess the influence of important parameters on the model’s behavior for Zika prevalence. Our study accentuates that as information-induced self-protection increases, the prevalence of Zika infection will be at a very minimum level, and this observation is in line with WHO suggestions.

Open Access
Relevant
On building machine learning models for medical dataset with correlated features

Abstract This work builds machine learning models for the dataset generated using a numerical model developed on an idealized human artery. The model has been constructed accounting for varying blood characteristics as it flows through arteries with variable vascular properties, and it is applied to simulate blood flow in the femoral and its continued artery. For this purpose, we designed a pipeline model consisting of three components to include the major segments of the femoral artery: CFA, the common femoral artery and SFA, the superficial artery, and its continued one, the popliteal artery (PA). A notable point of this study is that the features and target variables of the former component pipe form the set of features of the latter, thus resulting in multicollinearity among the features in the third component pipe. Thus, we worked on understanding the effect of these correlated features on the target variables using regularized linear regression models, ensemble, and boosting algorithms. This study highlighted the blood velocity in CFA as the primary influential factor for wall shear stress in both CFA and SFA. Additionally, it established the blood rheology in PA as a significant factor for the same in it. Nevertheless, because the study relies on idealized conditions, these discoveries necessitate thorough clinical validation.

Open Access
Relevant
Optimal control and bifurcation analysis of SEIHR model for COVID-19 with vaccination strategies and mask efficiency

Abstract In this article, we present a susceptible, exposed, infected, hospitalized and recovered compartmental model for COVID-19 with vaccination strategies and mask efficiency. Initially, we established the positivity and boundedness of the solutions to ensure realistic predictions. To assess the epidemiological relevance of the system, an examination is conducted to ascertain the local stability of the endemic equilibrium and the global stability across two equilibrium points are carried out. The global stability of the system is demonstrated using Lyapunov’s direct method. The disease-free equilibrium is globally asymptotically stable when the basic reproduction number (BRN) is less than one, whereas the endemic equilibrium is globally asymptotically stable when BRN is greater than one. A sensitivity analysis is performed to identify the influential factors in the BRN. The impact of various time-dependent strategies for managing and regulating the dynamic transmission of COVID-19 is investigated. In this study, Pontryagin’s maximum principle for optimal control analysis is used to identify the most effective strategy for controlling the disease, including single, coupled, and threefold interventions. Single-control interventions reveal physical distancing as the most effective strategy, coupled measures reduce exposed populations, and implementing all controls reduces susceptibility and infections.

Open Access
Relevant