The development of triboelectric nanogenerators using waste materials (WM-TENGs) has gained significant attention for advancing a low-carbon economy and enhancing renewable energy utilization. However, consumer concerns about hygiene and safety hinder their acceptance in human-related applications, particularly due to fears of residual bacteria on reused materials from previous users and the potential for new bacterial growth from new users. To address these concerns, we developed an antibacterial and high-performance triboelectric nanogenerator from waste PET materials (AW-TENG). By incorporating small antibacterial polyhexamethylene guanidine hydrochloride (PHMG) molecules into the PET molecular chains, the resultant material, PET-PHMG, not only retains the excellent antibacterial properties of PHMG but also exhibits significantly enhanced triboelectric properties. The PET-PHMG nanofiber based AW-TENG achieved a maximum output voltage and current of 120.2V and 2.9 μA, while demonstrating effective antibacterial activity against S. aureus and E. coli. The corresponding charge density of 22.1nC/cm² stands out as one of the highest among WM-TENGs. Given these attractive characteristics, the AW-TENG is well-suited for applications such as self-powered pressure sensors and fire alarm systems. This study highlights the advanced utilization of discarded PET-derived antibacterial material in TENG technology, which can effectively foster public confidence in the use of wasted materials.
Read full abstract