Sort by
Metabolic fingerprint after acute and under sustained consumption of a functional beverage based on grape skin extract in healthy human subjects.

Grape-derived polyphenols are considered to be one of the most promising ingredients for functional foods due to their health-promoting activities. We applied a HPLC-MS-based untargeted metabolomic approach in order to evaluate the impact of a functional food based on grape skin polyphenols on the urinary metabolome of healthy subjects. Thirty-one volunteers participated in two dietary crossover randomized intervention studies: with a single-dose intake (187 mL) and with a 15-day sustained consumption (twice per day, 187 mL per day in total) of a functional beverage (FB). Postprandial (4-hour) and 24-hour urine samples collected after acute consumption and on the last day of sustained FB consumption, respectively, were analysed using an untargeted HPLC-qTOF-MS approach. Multivariate modelling with subsequent application of an S-plot revealed differential mass features related to acute and prolonged consumption of FB. More than half of the mass features were shared between the two types of samples, among which several phase II metabolites of grape-derived polyphenols were identified at confidence level II. Prolonged consumption of FB was specifically reflected in urine metabolome by the presence of first-stage microbial metabolites of flavanols: hydroxyvaleric acid and hydroxyvalerolactone derivatives. Overall, several epicatechin and phenolic acid metabolites both of tissular and microbiota origin were the most representative markers of FB consumption. To our knowledge, this is one of the first studies where an untargeted LC-MS metabolomic approach has been applied in nutrition research on a grape-derived FB.

Open Access
Relevant
High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial.

The health benefits associated with the consumption of polyphenol-rich foods have been studied in depth, however, the full mechanism of action remains unknown. One of the proposed mechanisms is through microbiota interaction. In the present study, we aimed to explore the relationship between changes in fecal microbiota and changes in urinary phenolic metabolites after wine interventions. Nine participants followed a randomized, crossover, controlled interventional trial. After the washout period, they received red wine, dealcoholized red wine or gin for 20 days each. Polyphenol metabolites (n > 60) in urine were identified and quantified by UPLC-MS/MS and the microbial content of fecal samples was quantified by real-time quantitative PCR. Interventions with both red wine and dealcoholized red wine increased the fecal concentration of Bifidobacterium, Enterococcus and Eggerthella lenta, compared to gin intervention and baseline. When participants were categorized in tertiles of changes in fecal bacteria, those in the highest tertile of Bifidobacteria had higher urinary concentration changes in syringic acid, p-coumaric acid, 4-hydroxybenzoic acid and homovanillic acid (all anthocyanin metabolites) than those in tertile 1 (P < 0.05, all). In addition, changes of Bifidobacteria correlated positively with changes of these metabolites (r = 0.5-0.7, P < 0.05, all). Finally, the 68.5% changes in Bifidobacteria can be predicted by syringic acid and 4-hydroxybenzoic acid changes. This study confirms the important role of polyphenols as bacterial substrates and their modulatory capacity as an important field in the research of new products with prebiotic and probiotic characteristics for the food industry.

Open Access
Relevant