Sort by
Updated Models for the Effects of Temperature, Initial pH, NaCl, and NaNO2 on the Aerobic and Anaerobic Growth of Listeria monocytogenes

Data from several studies were appended to aerobic and anaerobic data sets that had been previously used to develop response surface models describing the growth kinetics of Listeria monocytogenes (Buchanan and Phillips, 1990). The expanded data sets included 709 aerobic and 358 anaerobic growth curves fitted with the Gompertz equation, and representing 189 and 150 unique combinations of four variables (temperature, pH, NaCl, NaNO2), respectively. Response surface models were developed for (1) the Gompertz B and M terms and (2) lag phase durations (LPD) and generation times (GT). In addition to modeling NaCl as a variable, a second set of response surface models was developed by substituting calculated water activity as a variable. A number of data transformations were evaluated in an attempt to better utilize no-growth data. Full quadratic models of the natural logarithm transformation of the data (no-growth data excluded) predicted values that fit the observed data well. The assignment of GT=50[emsp4 ]h and LPD=600[emsp4 ]h (the approximate maximum duration of experiments) for the variable combinations that did not support growth proved to be the most effective means of making use of the no-growth data. However, this approach did not offer any clear advantage over quadratic models where the no-growth data were excluded. Error matrices were developed for the LPD and GT models to provide 95 % confidence intervals. The agreement between observed and predicted growth kinetics was excellent considering the number and ranges of the variables encompassed in the models. The models provide reasonable predictions of the growth of L. monocytogenes in foods. The full quadratic models of LPD and GT without inclusion of the no-growth data were selected for inclusion in the USDA Pathogen Modeling Program, release 5.1.

Open Access
Relevant
Intra-isolate heterogeneity and reproducibility of PCR-based genotyping of Cryptosporidium parvum using the β-tubulin gene.

Cryptosporidium parvum is a common contaminant in surface waters and presents significant problems for the water industry, public health and agriculture. Consequently, ascertaining the contaminating source of waterborne oocysts is of paramount importance. Based on currently available information, isolates of C. parvum can be differentiated into at least two genotypes using polymorphic genetic markers: genotype 1, to date isolated almost exclusively from humans, and genotype 2 isolates from humans and many other animals. Differentiation into these two genotypes has been based on either restriction fragment length polymorphisms or sequencing of PCR amplified gene fragments. The objective of this study was to evaluate the reproducibility of genotyping methods using a single isolate of C. parvum. A 620 bp fragment of the C. parvum β-tubulin gene, generated by PCR from multiple aliquots of a single preparation of oocysts of the Iowa isolate, was sequenced. Significant sequence heterogeneity was detected within this single isolate; there was more sequence variation between clones originating from the Iowa isolate (up to 0.9 %) than between individual clones originating from different isolates of C. parvum. Over 6 % of the β-tubulin gene sequence positions (38 out of 620 bp) were variable when comparing multiple clones from the one isolate. The results indicated that while the various procedures used for genotyping isolates may introduce some sequence errors, the Iowa isolate used for this investigation appeared to be composed of multiple sub-genotypes. While none of the sequence variations resulted in clones of the Iowa isolate (genotype 2) being mis-identified as genotype 1, the results have important implications if minor sequence variations are to be used for subtyping isolates and drawing conclusions regarding the origin of, or relationships between, C. parvum oocysts in water and the community.

Relevant
Modeling Virus Adsorption in Batch and Column Experiments

Experiments with batch suspensions, recirculating columns and flow-through columns have been carried out involving a sandy soil and five bacteriophages: MS2, PRD1, φX174, Qβ and PM2. In batch and recirculating column experiments, attachment and detachment rate coefficients were determined by fitting a two-parameter (attachment and detachment) model. In general, attachment and detachment rate coefficients were not found to be significantly different between the two kinds of experiments. There was one exception, however: MS2 appeared to detach faster in the presence of strong advective flow. In the case of flow-through column experiments, it is shown that a two-site model, with adsorption to equilibrium and kinetic sites, fits the breakthrough curves of all the phages, except PM2, satisfactorily. A one-site kinetic model was found to be appropriate for phage PM2. A small proportion of bacteriophages MS2, PRD1, and Qβ adsorbed to equilibrium sites, whereas a large proportion of φX174 adsorbed to equilibrium sites. Such a distinction between adsorption to equilibrium and kinetic sites cannot be made in the case of batch or recirculating column experiments. Kinetic attachment rate coefficients were found to be significantly higher for the bacteriophages with presumably stronger negative charge. This may be ascribed to the presence of multivalent cations. Under these conditions, bacteriophage φX174 appears to behave more conservatively than more negatively charged viruses, and may then be a better choice as a relatively conservative tracer for virus transport through the subsurface.

Relevant