Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Regional patterns of human cortex development correlate with underlying neurobiology.

Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8,000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.

Read full abstract
Open Access
Folded Spectrum VQE: A Quantum Computing Method for the Calculation of Molecular Excited States.

The recent developments of quantum computing present novel potential pathways for quantum chemistry as the scaling of the computational power of quantum computers could be harnessed to naturally encode and solve electronic structure problems. Theoretically exact quantum algorithms for chemistry have been proposed (e.g., quantum phase estimation), but the limited capabilities of current noisy intermediate-scale quantum devices motivated the development of less demanding hybrid algorithms. In this context, the variational quantum eigensolver (VQE) algorithm was successfully introduced as an effective method to compute the ground-state energies of small molecules. This study investigates the folded spectrum (FS) method as an extension of the VQE algorithm for the computation of molecular excited states. It provides the possibility of directly computing excited states around a selected target energy using the same quantum circuit as for the ground-state calculation. Inspired by the variance-based methods from the quantum Monte Carlo literature, the FS method minimizes the energy variance, thus, in principle, requiring a computationally expensive squared Hamiltonian to be applied. We alleviate this potentially poor scaling by employing a Pauli grouping procedure to identify sets of commuting Pauli strings that can be evaluated simultaneously. This allows for a significant reduction in the computational cost. We applied the FS-VQE method to small molecules (H2, LiH), obtaining all electronic excited states with chemical accuracy on ideal quantum simulators. Furthermore, we explore the application of quantum error mitigation techniques, demonstrating improved energy accuracy on noisy simulators compared with simulations without mitigation.

Read full abstract
Open Access
Adolescent to young adult longitudinal development of subcortical volumes in two European sites with four waves.

Adolescent subcortical structural brain development might underlie psychopathological symptoms, which often emerge in adolescence. At the same time, sex differences exist in psychopathology, which might be mirrored in underlying sex differences in structural development. However, previous studies showed inconsistencies in subcortical trajectories and potential sex differences. Therefore, we aimed to investigate the subcortical structural trajectories and their sex differences across adolescence using for the first time a single cohort design, the same quality control procedure, software, and a general additive mixed modeling approach. We investigated two large European sites from ages 14 to 24 with 503 participants and 1408 total scans from France and Germany as part of the IMAGEN project including four waves of data acquisition. We found significantly larger volumes in males versus females in both sites and across all seven subcortical regions. Sex differences in age-related trajectories were observed across all regions in both sites. Our findings provide further evidence of sex differences in longitudinal adolescent brain development of subcortical regions and thus might eventually support the relationship of underlying brain development and different adolescent psychopathology in boys and girls.

Read full abstract
Open Access