Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Long lived photogenerated charge carriers in few-layer transition metal dichalcogenides obtained from liquid phase exfoliation.

Semiconducting transition metal dichalcogenides are important optoelectronic materials thanks to their intense light-matter interaction and wide selection of fabrication techniques, with potential applications in light harvesting and sensing. Crucially, these applications depend on the lifetimes and recombination dynamics of photogenerated charge carriers, which have primarily been studied in monolayers obtained from labour-intensive mechanical exfoliation or costly chemical vapour deposition. On the other hand, liquid phase exfoliation presents a high throughput and cost-effective method to produce dispersions of mono- and few-layer nanosheets. This approach allows for easy scalability and enables the subsequent processing and formation of macroscopic films directly from the liquid phase. Here, we use transient absorption spectroscopy and spatiotemporally resolved pump-probe microscopy to study the charge carrier dynamics in tiled nanosheet films of MoS2 and WS2 deposited from the liquid phase using an adaptation of the Langmuir-Schaefer technique. We find an efficient photogeneration of charge carriers with lifetimes of several nanoseconds, which we ascribe to stabilisation at nanosheet edges. These findings provide scope for photocatalytic and photodetector applications, where long-lived charge carriers are crucial, and suggest design strategies for photovoltaic devices.

Read full abstract
Open Access
2P-FLIM unveils time-dependent metabolic shifts during osteogenic differentiation with a key role of lactate to fuel osteogenesis via glutaminolysis identified

BackgroundHuman mesenchymal stem cells (hMSCs) utilize discrete biosynthetic pathways to self-renew and differentiate into specific cell lineages, with undifferentiated hMSCs harbouring reliance on glycolysis and hMSCs differentiating towards an osteogenic phenotype relying on oxidative phosphorylation as an energy source.MethodsIn this study, the osteogenic differentiation of hMSCs was assessed and classified over 14 days using a non-invasive live-cell imaging modality—two-photon fluorescence lifetime imaging microscopy (2P-FLIM). This technique images and measures NADH fluorescence from which cellular metabolism is inferred.ResultsDuring osteogenesis, we observe a higher dependence on oxidative phosphorylation (OxPhos) for cellular energy, concomitant with an increased reliance on anabolic pathways. Guided by these non-invasive observations, we validated this metabolic profile using qPCR and extracellular metabolite analysis and observed a higher reliance on glutaminolysis in the earlier time points of osteogenic differentiation. Based on the results obtained, we sought to promote glutaminolysis further by using lactate, to improve the osteogenic potential of hMSCs. Higher levels of mineral deposition and osteogenic gene expression were achieved when treating hMSCs with lactate, in addition to an upregulation of lactate metabolism and transmembrane cellular lactate transporters. To further clarify the interplay between glutaminolysis and lactate metabolism in osteogenic differentiation, we blocked these pathways using BPTES and α-CHC respectively. A reduction in mineralization was found after treatment with BPTES and α-CHC, demonstrating the reliance of hMSC osteogenesis on glutaminolysis and lactate metabolism.ConclusionIn summary, we demonstrate that the osteogenic differentiation of hMSCs has a temporal metabolic profile and shift that is observed as early as day 3 of cell culture using 2P-FLIM. Furthermore, extracellular lactate is shown as an essential metabolite and metabolic fuel to ensure efficient osteogenic differentiation and as a signalling molecule to promote glutaminolysis. These findings have significant impact in the use of 2P-FLIM to discover potent approaches towards bone tissue engineering in vitro and in vivo by engaging directly with metabolite-driven osteogenesis.Graphical

Read full abstract
Open Access
A Multifunctional Scaffold for Bone Infection Treatment by Delivery of microRNA Therapeutics Combined With Antimicrobial Nanoparticles.

Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.

Read full abstract
Open Access
Enhanced composite thermal conductivity by percolated networks of in-situ confined-grown carbon nanotubes

Despite the ever-increasing demand of nanofillers for thermal enhancement of polymer composites with higher thermal conductivity and irregular geometry, nanomaterials like carbon nanotubes (CNTs) have been constrained by the nonuniform dispersion and difficulty in constructing effective three-dimensional (3D) conduction network with low loading and desired isotropic or anisotropic (specific preferred heat conduction) performances. Herein, we illustrated the in-situ construction of CNT based 3D heat conduction networks with different directional performances. First, to in-situ construct an isotropic percolated conduction network, with spherical cores as support materials, we developed a confined-growth technique for CNT-core sea urchin (CNTSU) materials. With 21.0 wt.% CNTSU loading, the thermal conductivity of composites reached 1.43 ± 0.13 W/(m·K). Secondly, with aligned hexagonal boron nitride (hBN) as an anisotropic support, we constructed CNT-hBN aligned networks by in-situ CNT growth, which improved the utilization efficiency of high density hBN and reduced the thermal interface resistance between matrix and fillers. With ~ 8.5 wt.% loading, the composites possess thermal conductivity up to 0.86 ± 0.14 W/(m·K), 374% of that for neat matrix. Due to the uniformity of CNTs in hBN network, the synergistic thermal enhancement from one-dimensional (1D) + two-dimensional (2D) hybrid materials becomes more distinct. Based on the detailed experimental evidence, the importance of purposeful production of a uniformly interconnected heat conduction 3D network with desired directional performance can be observed, particularly compared with the traditional direct-mixing method. This study opens new possibilities for the preparation of high-power-density electronics packaging and interfacial materials when both directional thermal performance and complex composite geometry are simultaneously required.

Read full abstract
Open Access
Biodistribution and histological analysis of iron oxide-dextran nanoparticles in wistar rats

Iron oxide nanoparticles (IONP) are showing promise in many biomedical applications. One of these- magnetic hyperthermia- utilizes externally applied alternating magnetic fields and tumor-residing magnetic nanoparticles to generate localized therapeutic temperature elevations. Magnetic hyperthermia is approved in Europe to treat glioblastoma and is undergoing clinical assessment in the United States to treat prostate cancer. In this study, we performed biodistribution and histological analysis of a new IONP (RCL-01) in Wistar rats. These nanoparticles are currently undergoing clinical assessment in locally advanced pancreatic ductal adenocarcinoma to determine the feasibility of magnetic hyperthermia treatment in this disease. The study presented here aimed to determine the fate of these nanoparticles in vivo and whether this results in organ damage. Wistar rats were injected intravenously with relatively high doses of IONP (30 mgFe/kg, 45 mgFe/kg and 60 mgFe/kg) and compared to a vehicle control to determine the accumulation of iron in organs and whether this resulted in histological changes in these tissues. Dose-dependent increases of iron were observed in the liver, spleen and lungs of IONP-treated animals at 7 days postinjection; however, this did not result in significant histological changes in these tissues. Immunofluorescent imaging determined these nanoparticles are internalized by macrophages in tissue, suggesting they are readily phagocytosed by the reticuloendothelial system for eventual recycling. Notably, no changes in iron or dextran staining were found in the kidneys across all treatment groups, providing evidence for potential renal clearance.

Read full abstract