Sort by
Hair Growth Promoting Effect of <i>Dicerocaryum senecioides</i> Phytochemicals

Phytochemicals from Dicerocaryum senecioides were studied for hair rejuvenation activity using BalB/c mice. Solvent extractions and thin layer chromatography (TLC) were used to extract and isolate the phytochemicals respectively. Phytochemicals were identified by spraying with target-specific revealing reagents. In vivo hair growth stimulating activity for each extract was tested on denuded dorsal skin of 5-week old BalB/c mice against the controls and the standard drug minoxidil. The parameters used to evaluate hair growth were hair growth completion time, hair length, hair weight, hair follicle length, and relative hair follicle area. The identified phytochemicals from the active ethanol extract were steroidal glycosides, triterpenoid glycosides, and flavonoid glycosides. Flavonoid glycosides treatment had the uppermost hair rejuvenation capacity as measured by the shortest hair growth completion time (19 days) versus control (29 days) and longest hair length (11.04 mm and 11.86 mm for male and female mice respectively while the control group had 5.15 mm for male mice and 5.33 mm for female mice). Hair growth stimulation by flavonoid glycosides was also dependent on dose concentration. It can be concluded from this study that flavonoid glycosides extracted from the leaves of Dicerocaryum senecioides have remarkable hair rejuvenation capacity in BalB/c mice. The present results provides insights on the use of Dicerocaryum senecioides for hair rejuvenation in traditional practices and on the potential of the plant as a source of novel compounds that can be used as hair growth promoters.

Open Access
Relevant
Applications of Click Chemistry in the Development of HIV Protease Inhibitors.

Acquired Immunodeficiency Syndrome (AIDS) has been devastating for millions of people around the world. Inhibition of the human immunodeficiency virus (HIV) protease is among the most important approaches for the therapeutic intervention in HIV infection. Since the discovery of the HIV-1 protease, this enzyme has been considered as a key target for the inhibition of viral replication. A large body of research has been done to develop an effective HIV-1 protease inhibitor. There are to date 10 HIV-1 protease inhibitor drugs approved by the Food and Drug Administration (FDA) that have improved the survival and quality of life of HIV infected people. These drugs are prescribed in combination with the reverse transcriptase inhibitors, which is referred to as highly active antiretroviral therapy (HAART). The HIV-1 protease inhibitors play a vital role in HAART. The applications of click chemistry are dispersing in the field of drug discovery. Recently, click chemistry has captured a lot of attention and has become a powerful tool for the synthesis of medicinal skeletons in the discovery of anti-HIV drugs. Click reaction is a well-known method for making carbon−heteroatom−carbon bonds. Click reactions are popular because they are wide in scope, of high yielding, quick to perform, and easy to purify. In this review, we outlined current approaches towards the development of HIV-1 protease inhibitors employing click chemistry.

Open Access
Relevant
Biophysical, Biochemical, and Cell Based Approaches Used to Decipher the Role of Carbonic Anhydrases in Cancer and to Evaluate the Potency of Targeted Inhibitors.

Carbonic anhydrases (CAs) are thought to be important for regulating pH in the tumor microenvironment. A few of the CA isoforms are upregulated in cancer cells, with only limited expression in normal cells. For these reasons, there is interest in developing inhibitors that target these tumor-associated CA isoforms, with increased efficacy but limited nonspecific cytotoxicity. Here we present some of the biophysical, biochemical, and cell based techniques and approaches that can be used to evaluate the potency of CA targeted inhibitors and decipher the role of CAs in tumorigenesis, cancer progression, and metastatic processes. These techniques include esterase activity assays, stop flow kinetics, and mass inlet mass spectroscopy (MIMS), all of which measure enzymatic activity of purified protein, in the presence or absence of inhibitors. Also discussed is the application of X-ray crystallography and Cryo-EM as well as other structure-based techniques and thermal shift assays to the studies of CA structure and function. Further, large-scale genomic and proteomic analytical methods, as well as cell based techniques like those that measure cell growth, apoptosis, clonogenicity, and cell migration and invasion, are discussed. We conclude by reviewing approaches that test the metastatic potential of CAs and how the aforementioned techniques have contributed to the field of CA cancer research.

Open Access
Relevant