Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Investigation on impact properties of basalt and glass fiber reinforced polyester composites filled with nano silica

The relevance of granite waste is growing alongside the global demand for granite. This waste comprises various forms, including large granite pieces, tiny fragments, dust, and other debris. This research aimed to create a novel composite by incorporating nano silica from granite powder as a filler, combining it with basalt and glass fibres as the matrix, and using polyester as the resin. The fabrication involved Fiber Reinforced Composite (FRP) production through hand lay-up and vacuum silicon moulding to eliminate trapped air during lamination. After fabrication, tests were conducted for hardness, density, and Low-Velocity Impact under dropping weight. The results indicated that introducing nano silica as a filler in polyester resin positively impacted Basalt Fiber Reinforced Polyester Composite (BFRPC) and Glass Fiber Reinforced Polyester Composite (GFRPC). Analysis showed that as the nano-silica content increased, so did energy absorbed, impact strength and ductility index, up to a 1wt% nano-silica concentration. Beyond this point, agglomeration occurred, causing a decrease in these values. The 1 Nano silica Basalt Fiber Reinforced Polyester Composite (1NSBFRPC) material exhibited the highest energy absorption at 103.21J, indicating strong impact strength at 21.27kJ/m2. Conversely, the 1NSGFRPC material demonstrated the highest ductility index at 4.13. In comparison, Carbon Tech Global's (CTG) energy absorption, initially 25.56J, experienced a significant increase of 303.79%, reaching 103.21J. The impact strength also showed a notable shift, escalating by 396.96% from 4.28 KJ/m2 to an impressive 21.27kJ/m2. This shift in impact strength represented a remarkable 128.2% surge, highlighting the significant influence of integrating nano-silica. This new composite suits truck body carriers and offers environmental benefits. Furthermore, utilising nano silica in this context not only aids in waste reduction within the granite sector but also contributes to sustainable resources.

Read full abstract
Open Access
Green synthesis of size-controlled silver nan particles and their anti-cancer potentiality

Silver nanoparticles (Ag-NPs) are now well recognized as one of the most prevalent kinds of materials that are put to use in a wide variety of biomedical applications, most notably as an anti-cancer agent. In the current investigation, Ag-NPs were effectively produced by reducing silver ions by employing the leaf extract of Artocarpus heterophyllus as a source of reducing and capping agents. By altering the quantity of the silver nitrate solution, we successfully synthesized three distinct kinds of Ag-nanoparticles that were mediated by Artocarpus heterophyllus leaf extract. The X-ray diffraction (XRD) analysis first confirmed the formation of metallic silver, where peaks were found at fixed angles. XRD method was also used to validate the crystal geometry of the Ag-NPs, revealing that the Ag-NPs had a face-cantered cubic structure. The calculated average crystallite sizes of Sample-1 Ag-NPs, Sample-2 Ag-NPs, and Sample-3 Ag-NPs were 20.34 nm, 16.99 nm, and 18.88 nm, respectively. Ag-NPs were also confirmed from EDX analysis and firm Ag peaks, including several organic compound peaks. The nanoparticle’s range was between 120 nm and 220 nm, and the average particle size was near 170 nm, as found in the SEM image, and accumulation was observed in the SEM image. Using Fourier Transform Infrared (FT-IR) spectroscopy, we determined the functional groups of organic compounds that might be responsible for reducing agents and the presence of capping agents on the surface of Ag-NPs. The cell viability test was used to assess the cytotoxicity using the HeLa cell, a human carcinoma cell. The results revealed that the produced Ag-NPs demonstrated toxicity against carcinoma cells.

Read full abstract
Open Access