Sort by
A fractional time-stepping method for unsteady thermal convection in non-Newtonian fluids

We propose a fractional-step method for the numerical solution of unsteady thermal convection in non-Newtonian fluids with temperature-dependent physical parameters. The proposed method is based on a viscosity-splitting approach, and it consists of four uncoupled steps where the convection and diffusion terms of both velocity and temperature solutions are uncoupled while a viscosity term is kept in the correction step at all times. This fractional-step method maintains the same boundary conditions imposed in the original problem for the corrected velocity solution, and it eliminates all inconsistencies related to boundary conditions for the treatment of the pressure solution. In addition, the method is unconditionally stable, and it allows the temperature to be transported by a non-divergence-free velocity field. In this case, we introduce a methodology to handle the subtle temperature convection term in the error analysis and establish full first-order error estimates for the velocity and the temperature solutions and 1/2-order estimates for the pressure solution in their appropriate norms. Three numerical examples are presented to demonstrate the theoretical results and examine the performance of the proposed method for solving unsteady thermal convection in non-Newtonian fluids. The computational results obtained for the considered examples confirm the convergence, accuracy, and applicability of the proposed time fractional-step method for unsteady thermal convection in non-Newtonian fluids.

Just Published
Relevant
Stability analysis of random fractional-order nonlinear systems and its application

The research on stability analysis and control design for random nonlinear systems have been greatly popularized in recent ten years, but almost no literature focuses on the fractional-order case. This paper explores the stability problem for a class of random Caputo fractional-order nonlinear systems. As a prerequisite, under the globally and the locally Lipschitz conditions, it is shown that such systems have a global unique solution with the aid of the generalized Gronwall inequality and a Picard iterative technique. By resorting to Laplace transformation and Lyapunov stability theory, some feasible conditions are established such that the considered fractional-order nonlinear systems are respectively Mittag-Leffler noise-to-state stable, Mittag-Leffler globally asymptotically stable. Then, a tracking control strategy is established for a class of random Caputo fractional-order strict-feedback systems. The feasibility analysis is addressed according to the established stability criteria. Finally, a power system and a mass–spring-damper system modeled by the random fractional-order method are employed to demonstrate the efficiency of the established analysis approach. More critically, the deficiency in the existing literatures is covered up by the current work and a set of new theories and methods in studying random Caputo fractional-order nonlinear systems is built up.

Just Published
Relevant
Dynamical behaviors in perturbative longitudinal vibration of microresonators under the parallel-plate electrostatic force

The dynamic model for perturbative longitudinal vibration of microresonators subjected to the parallel-plate electrostatic force, which can be converted into a cubic oscillator with nonlinear polynomials, is established in this manuscript. The orbits and global dynamical behaviors of the cubic oscillator at full state are studied both analytically and numerically. The expressions of homoclinic orbits and subharmonic orbits are obtained analytically by solving the Hamilton system. The scenarios of phase portraits and equilibria are given. With the Melnikov method, the critical value of chaos arising from homoclinic intersections is derived analytically. The investigation yields intriguing dynamical phenomena, including the controllable frequencies that regulate the system without inducing chaos. The conditions for the occurrence of subharmonic bifurcations of integer order are presented with the subharmonic Melnikov method. Besides, the results indicate that the system does not undergo fractional order subharmonic bifurcation and it can reach a chaotic state through a finite number of integer order subharmonic bifurcations. On the basis of theoretical analysis, some numerical simulations including time histories, phase portraits, bifurcation diagrams, Poincaré cross-sections, Lyapunov exponential spectrums and basins of attractor are given, which are consistent with theoretical results.

Just Published
Relevant
Cascades of heterodimensional cycles via period doubling

A heterodimensional cycle is formed by the intersection of stable and unstable manifolds of two saddle periodic orbits that have unstable manifolds of different dimensions: connecting orbits exist from one periodic orbit to the other, and vice versa. The difference in dimensions of the invariant manifolds can only be achieved in vector fields of dimension at least four. At least one of the connecting orbits of the heterodimensional cycle will necessarily be structurally unstable, meaning that is does not persist under small perturbations. Nevertheless, the theory states that the existence of a heterodimensional cycle is generally a robust phenomenon: any sufficiently close vector field (in the C1-topology) also has a heterodimensional cycle.We investigate a particular four-dimensional vector field that is known to have a heterodimensional cycle. We continue this cycle as a codimension-one invariant set in a two-parameter plane. Our investigations make extensive use of advanced numerical methods that prove to be an important tool for uncovering the dynamics and providing insight into the underlying geometric structure. We study changes in the family of connecting orbits as two parameters vary and Floquet multipliers of the periodic orbits in the heterodimensional cycle change. In particular the Floquet multipliers of one of the periodic orbits change from real positive to real negative prior to a period-doubling bifurcation. We then focus on the transitions that occur near this period-doubling bifurcation and find that it generates new families of heterodimensional cycles with different geometric properties. Our careful numerical study suggests that further two-parameter continuation of the ‘period-doubled heterodimensional cycles’ gives rise to an abundance of heterodimensional cycles of different types in the limit of a period-doubling cascade.Our results for this particular example vector field make a contribution to the emerging bifurcation theory of heterodimensional cycles. In particular, the bifurcation scenario we present can be viewed as a specific mechanism behind so-called stabilisation of a heterodimensional cycle via the embedding of one of its constituent periodic orbits into a more complex invariant set.

Relevant