Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
The stress sigma factor of RNA polymerase RpoS/σS is a solvent-exposed open molecule in solution.

In bacteria, one primary and multiple alternative sigma (σ) factors associate with the RNA polymerase core enzyme (E) to form holoenzymes (Eσ) with different promoter recognition specificities. The alternative σ factor RpoS/σS is produced in stationary phase and under stress conditions and reprograms global gene expression to promote bacterial survival. To date, the three-dimensional structure of a full-length free σ factor remains elusive. The current model suggests that extensive interdomain contacts in a free σ factor result in a compact conformation that masks the DNA-binding determinants of σ, explaining why a free σ factor does not bind double-stranded promoter DNA efficiently. Here, we explored the solution conformation of σS using amide hydrogen/deuterium exchange coupled with mass spectrometry, NMR, analytical ultracentrifugation and molecular dynamics. Our data strongly argue against a compact conformation of free σS Instead, we show that σS adopts an open conformation in solution in which the folded σ2 and σ4 domains are interspersed by domains with a high degree of disorder. These findings suggest that E binding induces major changes in both the folding and domain arrangement of σS and provide insights into the possible mechanisms of regulation of σS activity by its chaperone Crl.

Read full abstract
Open Access
Proteome remodelling by the stress sigma factor RpoS/\u03c3S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation

The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.

Read full abstract
Open Access
Binding interface between the Salmonella σ(S)/RpoS subunit of RNA polymerase and Crl: hints from bacterial species lacking crl.

In many Gram-negative bacteria, including Salmonella enterica serovar Typhimurium (S. Typhimurium), the sigma factor RpoS/σS accumulates during stationary phase of growth, and associates with the core RNA polymerase enzyme (E) to promote transcription initiation of genes involved in general stress resistance and starvation survival. Whereas σ factors are usually inactivated upon interaction with anti-σ proteins, σS binding to the Crl protein increases σS activity by favouring its association to E. Taking advantage of evolution of the σS sequence in bacterial species that do not contain a crl gene, like Pseudomonas aeruginosa, we identified and assigned a critical arginine residue in σS to the S. Typhimurium σS-Crl binding interface. We solved the solution structure of S. Typhimurium Crl by NMR and used it for NMR binding assays with σS and to generate in silico models of the σS-Crl complex constrained by mutational analysis. The σS-Crl models suggest that the identified arginine in σS interacts with an aspartate of Crl that is required for σS binding and is located inside a cavity enclosed by flexible loops, which also contribute to the interface. This study provides the basis for further structural investigation of the σS-Crl complex.

Read full abstract
Open Access