Sort by
Examining the moderating role of cannabis use on the relationship between alcohol consumption and inflammation in individuals with alcohol use disorder.

Inflammation appears to be a critical mechanism in the development of alcohol use disorder (AUD) and a consequence of chronic alcohol use. The potential anti-inflammatory properties of cannabis may modulate the proinflammatory effects of alcohol. This study sought to extend previous work investigating the relationship between alcohol consumption, cannabis use and circulating interleukin (IL)-6 levels in a sample with AUD. One hundred and thirty-three individuals with an AUD provided blood samples to assess IL-6 and answered questions regarding alcohol and cannabis use. An ordinary least squares multiple regression analysis was conducted to assess the effect of alcohol and cannabis use on IL-6. A moderation analysis examined cannabis use as a potential moderator of the relationship between alcohol use and circulating IL-6 levels. Alcohol use was predictive of higher log IL-6 levels (standardized β = 0.16, p = 0.03), while cannabis use was not predictive of log IL-6 levels (p = 0.36). Days of cannabis use moderated the relationship between alcohol use and IL-6 levels, such that the relationship between alcohol use and IL-6 levels was only significant in individuals with AUD without recent cannabis use. This study extends previous work to a clinical sample with an AUD and underscores the importance of considering cannabis use in studies on alcohol use and inflammation. This study also indicates the need for in-depth analyses on cannabinoids and inflammation and the interaction between cannabinoids and alcohol use on inflammation.

Just Published
Relevant
Negative allosteric modulation of CB1 cannabinoid receptor signalling decreases intravenous morphine self-administration and relapse in mice.

The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that negative allosteric modulation of CB1R signalling would reduce the reinforcing properties of morphine and decrease behaviours associated with opioid misuse. By employing intravenous self-administration in mice, we studied the effects of GAT358, a functionally-biased CB1R negative allosteric modulator (NAM), on morphine intake, relapse-like behaviour and motivation to work for morphine infusions. GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under a fixed ratio 1 schedule of reinforcement. GAT358 also decreased morphine-seeking behaviour after forced abstinence. Moreover, GAT358 dose dependently decreased the motivation to obtain morphine infusions under a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration was reward specific. Furthermore, GAT58 did not produce motor ataxia in the rotarod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease misuse of opioids.

Just Published
Relevant
Kv7 channel opener retigabine reduces self-administration of cocaine but not sucrose in rats.

The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviours that can be modelled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that Kv7/KCNQ channels may contribute to the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drugs is not known. Here, we tested the ability of retigabine (ezogabine), a Kv7 channel opener, to regulate instrumental behaviour in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a conditioned place preference (CPP) assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine pretreatment attenuated the SA of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared with sucrose-SA, cocaine-SA was associated with reductions in the expression of the Kv7.5 subunit in the nucleus accumbens, without alterations in Kv7.2 and Kv7.3. Therefore, these studies reveal a reward-specific reduction in SA behaviour and support the notion that Kv7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.

Just Published
Relevant
The ReCoDe addiction research consortium: Losing and regaining control over drug intake-Findings and future perspectives.

Substance use disorders (SUDs) are seen as a continuum ranging from goal-directed and hedonic drug use to loss of control over drug intake with aversive consequences for mental and physical health and social functioning. The main goals of our interdisciplinary German collaborative research centre on Losing and Regaining Control over Drug Intake (ReCoDe) are (i) to study triggers (drug cues, stressors, drug priming) and modifying factors (age, gender, physical activity, cognitive functions, childhood adversity, social factors, such as loneliness and social contact/interaction) that longitudinally modulate the trajectories of losing and regaining control over drug consumption under real-life conditions. (ii) To study underlying behavioural, cognitive and neurobiological mechanisms of disease trajectories and drug-related behaviours and (iii) to provide non-invasive mechanism-based interventions. These goals are achieved by: (A) using innovative mHealth (mobile health) tools to longitudinally monitor the effects of triggers and modifying factors on drug consumption patterns in real life in a cohort of 900 patients with alcohol use disorder. This approach will be complemented by animal models of addiction with 24/7 automated behavioural monitoring across an entire disease trajectory; i.e. from a naïve state to a drug-taking state to an addiction or resilience-like state. (B) The identification and, if applicable, computational modelling of key molecular, neurobiological and psychological mechanisms (e.g., reduced cognitive flexibility) mediating the effects of such triggers and modifying factors on disease trajectories. (C) Developing and testing non-invasive interventions (e.g., Just-In-Time-Adaptive-Interventions (JITAIs), various non-invasive brain stimulations (NIBS), individualized physical activity) that specifically target the underlying mechanisms for regaining control over drug intake. Here, we will report on the most important results of the first funding period and outline our future research strategy.

Open Access
Relevant
Interrelated involvement of the endocannabinoid/endovanilloid (TRPV1) systems and epigenetic processes in anxiety- and working memory impairment-related behavioural effects of nicotine as a stressor.

The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.

Open Access
Relevant
Epigenetic and sex differences in opioid use disorder in chronic pain: A real-world study linked with OPRM1 DNA methylation.

Opioid use disorder (OUD) is a multifaceted condition influenced by sex, genetic and environmental factors that could be linked with epigenetic changes. Understanding how these factors interact is crucial to understand and address the development and progression of this disorder. Our aim was to elucidate different potential epigenetic and genetic mechanisms between women and men that correlate with OUD under real-world pain unit conditions. Associations between analgesic response and the DNA methylation level of the opioid mu receptor (OPRM1) gene (CpG sites 1-5 selected in the promoter region) were evaluated in 345 long opioid-treated chronic non cancer pain: cases with OUD (n = 67) and controls (without OUD, n = 278). Cases showed younger ages, low employment status and quality of life, but higher morphine equivalent daily dose and psychotropic use, compared to the controls. The patients with OUD showed a significant decrease in OPRM1 DNA methylation, which correlated with clinical outcomes like pain relief, depression and different adverse events. Significant differences were found at the five CpG sites studied for men, and exclusively in women for CpG site 3, in relation to OUD diagnosis. These findings support the importance of epigenetics and sex as biological variables to be considered toward efficient OUD understanding and therapy development.

Open Access
Relevant
Effective alleviation of depressive and anxious symptoms and sleep disorders in benzodiazepine-dependent patients through repetitive transcranial magnetic stimulation.

Benzodiazepine (BZD) dependence poses a significant challenge in mental health, prompting the exploration of treatments like repetitive transcranial magnetic stimulation (rTMS). This research aims to assess the impact of rTMS on alleviating symptoms of BZD dependence. A randomized control trial was employed to study 40 BZD-dependent inpatients. Their symptoms were quantified using the Hamilton Anxiety Rating Scale (HAMA), Montgomery-Åsberg Depression Rating Scale (MADRS) and Pittsburgh Sleep Quality Index (PSQI). Participants were divided into a conventional treatment group (daily diazepam with gradual tapering) with supportive psychotherapy and another group receiving the same treatment supplemented with rTMS (five weekly sessions for 2weeks). Significant improvements were observed in both groups over baseline in MADRS, HAMA and PSQI scores at the 2nd, 4th, 8th and 12th week assessments (p <0.05). The group receiving rTMS in addition to conventional treatment exhibited superior improvements in all measures at the 8th and 12th weeks. The addition of rTMS to conventional treatment methods for BZD dependence significantly betters the recovery in terms of depression, anxiety and sleep quality, highlighting the role of rTMS as an effective adjunct therapy.

Open Access
Relevant
Neurofunctional changes related to methamphetamine and sexual cues in methamphetamine dependence from short- to long-term abstinence.

Abuse of methamphetamine has aroused concern worldwide. Stimulant use and sexual behaviours have been linked in behavioural and epidemiological studies. Although methamphetamine-related neurofunctional differences are reported in previous studies, only few studies have examined neurofunctional changes related to methamphetamine and sexual cues in methamphetamine dependence from short- to long-term abstinence. Neurofunctional changes were measured using a cue-reactivity task involving methamphetamine, sexual, and neutral cues in 20 methamphetamine abusers who were evaluated after a short- (1 week to 3 months) and long-term (10-15 months) abstinence. Five brain regions mainly involved in the occipital lobe and the parietal lobe were found with the group-by-condition interaction. Region-of-interest analyses found higher sexual-cue-related activation than other two activations in all five brain regions in the long-term methamphetamine abstinence group while no group differences were found. Negative relationships between motor impulsivity and methamphetamine- or sexual-cue-related activations in the left middle occipital gyrus, the superior parietal gyrus and the right angular gyrus were found. The findings suggested that methamphetamine abstinence may change the neural response of methamphetamine abusers to methamphetamine and sexual cues, and the neurofunction of the five brain regions reported in this study may partly recover with long-term methamphetamine abstinence. Given the use and relapse of methamphetamine for sexual purposes, the findings of this study may have particular clinical relevance.

Open Access
Relevant
Differential effects of acute and prolonged morphine withdrawal on motivational and goal-directed control over reward-seeking behaviour.

Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational and cognitive processes involved in regulating the pursuit and consumption of food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal disrupted their ability to exert flexible goal-directed control over reward seeking. Specifically, morphine-withdrawn rats were impaired in using current reward value to select actions both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case, rats were only impaired in using reward value to select actions in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.

Open Access
Relevant
The risk of cannabis use disorder is mediated by altered brain connectivity: A chronnectome study.

The brain mechanisms underlying the risk of cannabis use disorder (CUD) are poorly understood. Several studies have reported changes in functional connectivity (FC) in CUD, although none have focused on the study of time-varying patterns of FC. To fill this important gap of knowledge, 39 individuals at risk for CUD and 55 controls, stratified by their score on a self-screening questionnaire for cannabis-related problems (CUDIT-R), underwent resting-state functional magnetic resonance imaging. Dynamic functional connectivity (dFNC) was estimated using independent component analysis, sliding-time window correlations, cluster states and meta-state indices of global dynamics and were compared among groups. At-risk individuals stayed longer in a cluster state with higher within and reduced between network dFNC for the subcortical, sensory-motor, visual, cognitive-control and default-mode networks, relative to controls. More globally, at-risk individuals had a greater number of meta-states and transitions between them and a longer state span and total distance between meta-states in the state space. Our findings suggest that the risk of CUD is associated with an increased dynamic fluidity and dynamic range of FC. This may result in altered stability and engagement of the brain networks, which can ultimately translate into altered cortical and subcortical function conveying CUD risk. Identifying these changes in brain function can pave the way for early pharmacological and neurostimulation treatment of CUD, as much as they could facilitate the stratification of high-risk individuals.

Open Access
Relevant