Sort by
Therapeutic Protection from Hepatic Injury and Chemical Constituents of Buchanania angustifolia Roxb

The use of modern medicines in the treatment of diseases instead of traditional medicine is causing different adverse effects. Therefore, there is need to search new bioactive compounds to treat different diseases. Buchanania angustifolia has been used in traditional medicine in the treatment of different diseases. On the basis of folkloric information, B. angustifolia aerial parts extracts have been selected for their antioxidant and hepatoprotective potentiality and phytochemical constituents. Qualitative phytochemical screening of B. angustifolia extracts revealed the presence of phytochemical constituents such as steroids, terpenoids, flavonoids, alkaloids, glycosides, tannins, carbohydrates, oils and amino acids. BA-1 and BA-2 compounds isolated from hydroalcoholic extract using chromatography and were identified as linolenic acid and mixture of stigmasterol and β-sitosterol. Antioxidant activity was performed on superoxide, hydroxyl and 1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino) propane hydrochloride free radicals. The B. angustifolia extracts showed dose-dependent activity on free radicals. The hydroalcoholic extract showed better activity. The extracts showed hepatoprotective activity on thioacetamide-induced liver intoxication in rats, and hydroalcoholic extract exhibited significant restoration of the altered biochemical parameters due thioacetamide-induced liver intoxication. Among the tested extracts of B. angustifolia, hydroalcoholic extract showed higher antioxidant and hepatoprotective activity and stigmasterol and β-sitosterol were isolated. Further research is needed to evaluate other pharmacological activities and to isolate the other bioactive compounds from B. angustifolia.

Open Access
Relevant
Development and in vitro Evaluation of Voriconazole Nanoparticle Formulation for Mucosal Application.

This study aimed to prepare and evaluate mucoadhesive nanoparticle formulations of voriconazole, an antifungal drug, for mucosal application. It was also aimed to develop and validate a HPLC method of voriconazole. In this study, mucoadhesive nanoparticles containing voriconazole were prepared using a coating polymer of chitosan. The obtained nanoparticles were characterized via particle size, polydispersity index, zeta potential measurement, and mucoadhesion studies. Drug loading capacity was tested for determination of the voriconazole amount in the nanoparticles. In vitro drug release was also examined. The HPLC method was validated for linearity, accuracy, precision (repeatability and reproducibility), specificity, stability, limits of detection (LOD), and limit of quantification (LOQ). In vitro characterization results of the mucoadhesive nanoparticle formulation containing voriconazole was found to be appropriate with a small particle size of 217.1±4.2 nm, a narrow polydispersity index of 0.335±0.042, 99.052±0.424% drug loading, and a positive zeta potential value of +26.82±0.4 mV. Accor-ding to a mucoadhesive study, it can be concluded that the nanoparticle was able to interact with mu-cin due to ionic interaction. Also, the turbidity of nanoparticle/mucin dispersion was higher than the turbidity of mucin dispersion itself. Based on the in vitro drug release, no burst effect was observed, indicating that voriconazole was homogeneously dispersed in the nanoparticle dispersion and that no significant amount of drug was adsorbed onto the nanoparticle surface. The release was found to fol-low a non Fickian diffusion mechanism with first order drug release. The proposed HPLC method was simple, highly sensitive with good linearity, accurate, precise, specific, and stable, showing that the method is useful for routine quality control. This study has shown that the mucoadhesive nanoparticle formulation containing voriconazole repor-ted here is a promising candidate for the local treatment of mucosal diseases. The developed HPLC method can be succesfully applied to pharmaceutical preparations containing voriconazole.

Open Access
Relevant
Phytochemical Screening for Various Secondary Metabolites, Antioxidant, and Anthelmintic Activity of Coscinium fenestratum Fruit Pulp: A New Biosource for Novel Drug Discovery.

Coscinium fenestratum (Gaertn.) Colebr. (CF, Family: Menispermaceae) is an important endangered woody climber in India. CF contains various major secondary metabolites for the treatment of various disease conditions. The present study aimed to establish the antioxidant and anthelmintic activity of Coscinium fenestratum fruit pulp. The dried fruit pulp was subjected to aqueous, methanol, and mixed aqueous and methanol (1:1) solvent extraction followed by phytochemical investigations, estimations of alkaloids, phenolics, flavonoids, antioxidant potentiality (DPPH and hydrogen peroxide scavenging methods), and anthelmintic activity tests were carried out. Preliminary phytochemical screening of CF fruit extracts revealed the presence of alkaloids phenols, flavonoids, tannins, steroids, and resins, which are responsible for biologic properties. The combined aqueous and methanol extract resulted in significant anthelmintic and antioxidant properties in a dose-dependent manner. The DPPH free radical scavenging assay and H2O2 assay exhibited IC50 values of 42.38±0.012 µg/mL and 46.80±0.011 µg/mL, respectively. Thereafter, the anthelmintic activity test was carried out against Pheretima posthuma and Taenia solium with the extract at varying concentrations of 25, 50, 100 and 150 mg/mL and compared with standard albendazole (25 and 50 mg/mL) and saline (0.9%) as a control. All the extracts exhibited concentration-dependent paralytic effect, followed by death on the test organism, but significant activity was observed with the combined methanol and aqueous extract. The study was conducted in order to find possible isolated compounds as a biosources for future novel antioxidants in food and pharmaceutical formulations. Our findings indicate for the first time that the CF fruit pulp has therapeutic values with prominent antioxidant and anthelmintic properties.

Open Access
Relevant