Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Hub metabolites promote the bioflocculants' production in a biomass-degrading bacterium Pseudomonas boreopolis GO2.

The low yield of bioflocculants has been a bottleneck problem that limits their industrial applications. Understanding the metabolic mechanism of bacteria that produce bioflocculants, could provide valuable insights and strategies to directly regulate their yield in future. To investigate the change of metabolites in the process of bioflocculant production by a biomass-degrading bacterium, Pseudomonas boreopolis GO2, an untargeted metabolome analysis was performed. The results showed that metabolites significantly differed during the fermentation process when corn stover was used as the sole carbon source. The differential metabolites were divided into four co-expression modules based on the weighted gene co-expression network analysis. Among them, a module (yellow module) was closely related to the flocculating efficiency, and the metabolites in this module were mainly involved in carbohydrate, lipid and amino acid metabolism. The top 30 metabolites with the highest degree in the yellow module were identified as hub metabolites for bioflocculants' production. Finally, 10 hub metabolites were selected to perform the additional experiments, and the addition of L-rhamnose, tyramine, tryptophan, and glutaric acid alone all could significantly improve the flocculating efficiency of GO2 strain. These results indicated that the hub metabolites were key for bioflocculant production in GO2 strain, and could help guide the improvement of high-efficiency and low-cost bioflocculant production.

Read full abstract
Open Access Just Published
Development of a triplex endpoint PCR assay for the detection of SARS-CoV-2: insights on cost-efficiency and method design.

Lower respiratory tract infections, including COVID-19, have a substantial global impact, making the development of diagnostic tests crucial. The study aimed to develop a new, accurate, fast, and cost-effective PCR-based detection method for SARS-CoV-2, applicable in limited settings and capable of detecting all current variants and potential future pathogens. The study was conducted between 2020 and 2022 at the molecular biology department of Mures County Clinical Hospital, Romania. Initially, pharyngeal and nasal secretions were collected and processed using the real-time qRT-PCR method for routine COVID-19 diagnosis. Ninety-two samples were randomly selected to develop the assay, including samples from different infection periods and negative controls. Complementary DNA (cDNA) was prepared from the selected samples, and the presence and integrity of the extracted RNA were evaluated by amplifying the GAPDH housekeeping gene. Primers for three specific viral genes (N, ORF1ab, and S) were designed, and their efficiency was evaluated using endpoint PCR and sequencing. Finally, the method was optimized and implemented as a one-step triplex PCR assay for routine diagnostic use. The molecular laboratory at the Mures County Clinical Hospital (MCCH) analyzed a total of 41,818 samples between June 2020 and December 2022. Among these samples, 26.15% tested positive for SARS-CoV-2, while 70.9% were negative and 2.95% were inconclusive or invalid. Three peaks of positive tests were observed in November 2020, April 2021, and February 2022. The study selected 92 preserved RNA samples for triplex-PCR assay development, validating the primers' specificity and confirming the quality of the nucleic acids. The comparative analysis showed the efficiency and accuracy of the endpoint reverse-transcription triplex-PCR method (RT-PCR), indicating its potential as a cost-effective alternative to real-time reverse-transcription PCR (qRT-PCR) in low-income countries with limited infrastructure for COVID-19 testing. This method has the potential to facilitate large-scale diagnosis of SARS-CoV-2 infections, allowing for rapid and appropriate therapeutic management and ongoing monitoring of patients. Additionally, the method can be easily adapted for the detection of other pathogens.

Read full abstract
Open Access
Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota

Introduction: Post-infectious irritable bowel syndrome (PI-IBS) is a functional bowel disease that develops following an acute gastrointestinal infection. Electroacupuncture (EA) can regulate the gut microbiota and alleviate visceral hypersensitivity. Glial cell-derived neurotrophic factor (GDNF) is a potential factor in visceral hypersensitivity reactions. The aim of this study was to explore whether EA could alleviate visceral hypersensitivity in PI-IBS by regulating gut microbiota through GDNF signaling. Methods: 2,4,6-trinitrobenzene sulfonic acid was used to induce visceral hypersensitivity in PI-IBS mice. Intestinal visceral sensitivity was assessed by using the abdominal withdrawal reflex (colorectal distention). 16S ribosomal RNA sequencing profiles the gut microbiome community. Results: GDNF can exacerbate the imbalances of the gut microbiota and increase visceral hypersensitivity compared with the model group. Whereas EA treatment increases the richness and diversity of the gut microbiota, decreases differences among species and alleviates visceral sensitivity. Conclusion: EA can alleviate visceral hypersensitivity in PI-IBS by regulating the gut microbiota via GDNF signaling, providing new insights for mechanistic research on EA in PI-IBS treatment.

Read full abstract
Open Access
Virulence-Related Genes Expression in Planktonic Mixed Cultures of Candida albicans and Non-Albicans Candida Species

Introduction: Candida albicans is the most common opportunistic pathogen causing fungal infections worldwide, especially in high-risk patients. Its pathogenicity is related to virulence factors gene expression, such as hyphal growth (HWP1), cell adhesion (ALS3), and protease secretion (SAP1) during infection spreading mechanisms. In recent years, an increase in non-albicans Candida infections has been reported, which may present coinfection or competitive interactions with C. albicans, potentially aggravating the patient’s condition. This study aims to evaluate the expression of genes related to virulence factors of C. albicans and non-albicans Candida during planktonic stage. Methods: C. albicans (ATCC MYA-3573) as well as with three clinical strains (C. albicans DCA53, C. tropicalis DCT6, and C. parapsilosis DCP1) isolated from blood samples, were grown in 24-well plates at 37°C for 20 h, either in monocultures or mixed cultures. Quantitative real-time polymerase chain reaction was used to evaluate the expression levels of the genes HWP1, ALS3, and SAP1 in cells collected during the planktonic stage. In addition, hyphal filamentation was observed using a Scanning Electron Microscope. Results: The overexpression of HWP1 and ASL3 genes in mixed growth conditions between C. albicans and non-albicans Candida species suggests a synergistic relationship as well as an increased capacity for hyphal growth and adhesion. In contrast, C. parapsilosis versus C. tropicalis interaction shows an antagonistic relationship during mixed culture, suggesting a decreased virulence profile of C. parapsilosis during initial coinfection with C. tropicalis. Conclusion: The expression of HWP1, ALS3, and SAP1 genes associated with virulence factors varies under competitive conditions among species of the genus Candida during planktonic stage.

Read full abstract
Open Access
Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum

Background: Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10–100 µm, a complex “cell covering”, exceptionally large genomes (∼1–250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. Summary: Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a–b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. Key Messages: FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.

Read full abstract
Open Access
An Insider’s Perspective about the Pathogenic Relevance of Gut Bacterial Transportomes

Background: The gut microbiome is integral to host health, hosting complex interactions between the host and numerous microbial species in the gastrointestinal tract. Key among the molecular mechanisms employed by gut bacteria are transportomes, consisting of diverse transport proteins crucial for bacterial adaptation to the dynamic, nutrient-rich environment of the mammalian gut. These transportomes facilitate the movement of a wide array of molecules, impacting both the host and the microbial community. Summary: This communication explores the significance of transportomes in gut bacteria, focusing on their role in nutrient acquisition, competitive interactions among microbes, and potential pathogenicity. It delves into the transportomes of key gut bacterial species like E. coli, Salmonella, Bacteroides, Lactobacillus, Clostridia, and Bifidobacterium, examining the functions of predicted transport proteins. The overview synthesizes recent research efforts, highlighting how these transportomes influence host-microbe interactions and contribute to the microbial ecology of the gut. Key Messages: Transportomes are vital for the survival and adaptation of bacteria in the gut, enabling the import and export of various nutrients and molecules. The complex interplay of transport proteins not only supports bacterial growth and competition but also has implications for host health, potentially contributing to pathogenic processes. Understanding the pathogenic potential of transportomes in major gut bacterial species provides insights into gut health and disease, offering avenues for future research and therapeutic strategies.

Read full abstract
Open Access
Pseudomonas stutzeri KC Carries the pdt Genes for Carbon Tetrachloride Degradation on an Integrative and Conjugative Element

Introduction: Pseudomonas stutzeri KC can rapidly degrade carbon tetrachloride (CCl4) to CO2 by a fortuitous reaction with pyridine-2,6-bis(thiocarboxylic acid), a metal chelator encoded by pdt genes. These genes were first identified after a spontaneous mutant, strain CTN1, lost the ability to degrade CCl4. Methods: Here we generated the complete genome of strain KC and carried out comparative genomic analyses to illuminate the evolutionary history of the pdt genes. Results: The pdt genes are located on an integrative and conjugative element (ICE), designated ICEPsstKC. Homologs of pdt genes were found in other genomes of members of gammaproteobacterial orders. Discrepancies between the tree topologies of the deduced pdt gene products and the host phylogeny based on the 16S rRNA gene sequence provided evidence for horizontal gene transfer (HGT) in several sequenced strains of these orders. In addition to ICEPsstKC, HGT may be have been facilitated by other mobile genetic elements, as indicated by the location of the pdt gene cluster adjacent to fragments of other ICEs and prophages in several genome assemblies. Furthermore, we show that the majority of cells from the culture collection DSMZ had lost the ICE. Conclusion: The presence of the pdt gene cluster on mobile genetic elements has important implications for the bioremediation of CCl4 and needs consideration when selecting suitable strains.

Read full abstract
Open Access
Global growth phase response of the gut bacterium Phocaeicola vulgatus (phylum Bacteroidota).

Phocaeicola vulgatus belongs to the intestinal microbiome, where it fermentatively breaks down of food-derived biopolymers , thereby, contributing to the gut metabolome. Moreover, due to its product range, P. vulgatus is a potential nonstandard platform organism for sustainable production of basic organic chemicals. Complementing a recent physiologic-proteomic report deciphering the strain's versatile fermentation network [1], the present study focuses on the global growth phase-dependent response. P. vulgatus was anaerobically cultivated with glucose in process-controlled bioreactors. Close sampling was conducted to measure growth parameters (OD, CDW, ATP content, substrate/product profiles) to determine growth stoichiometry. A coarser sampling (½ODmax, ODmax, and ODstat) served the molecular analysis of the global growth phase-dependent response, applying proteomics (soluble and membrane fractions, nanoLC-ESI-MS/MS) and targeted/untargeted metabolome analyses. The determined growth performance of features 1.74 h doubling time, 0.06 gCDW/mmolGlc biomass yield, 0.36 (succinate) and 0.61 (acetate) mmolP/mmolGlc as predominant fermentation product yields, and 0.43 mmolATP/mmolC as theoretically calculated ATP yield. The fermentation pathway displayed growth phase-dependent dynamics: the levels of proteins and their accompanying metabolites constituting the upper part of glycolysis peaked at ½ODmax, whereas those of the lower part of glycolysis and of the fermentation routes in particular towards predominant acetate and succinate were highest at ODmax and ODstat. While identified proteins of monomer biosynthesis displayed rather unspecific profiles, most of the intracellular amino acids peaked at ODmax. By contrast, proteins and metabolites related to stress response and quorum sensing showed increased abundances at ODmax and ODstat. The composition of the exometabolome expanded from 2,317 molecular formulas at ½ODmax via 4,258 at ODmax to 4,501 at ODstat, with growth phase-specific subsets increasing in parallel. The present study provides insights into the distinct growth phase-dependent behavior of P. vulgatus during cultivation in bioreactors. This could serve as a valuable knowledge base for further developing P. vulgatus as a non-conventional platform organism for biotechnological applications. In addition, the findings shed new light on the potential growth phase-dependent imprints of P. vulgatus on the gut microbiome environment, e.g. by indicating interactions via quorum sensing and by unraveling the complex exometabolic background against which fermentation products and secondary metabolites are formed.

Read full abstract
Open Access
Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule

Introduction: C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions. In addition, mutants related to carbon catabolite repression (CCR) and C4-DC regulation (DcuS-DcuR) were examined to better understand the regulatory integration of aerobic C4-DC metabolism into CCR. For initial insight into posttranslational regulation, the interaction between the aerobic C4-DC transporter DctA and EIIAGlc from the glucose-specific phosphotransferase system was investigated. Methods: The expression of dctA was characterized in the presence of various carbohydrates and regulatory mutants affecting CCR. This was accomplished by fusing the dctA promoter (PdctA) to the lacZ reporter gene. Additionally, the interaction between DctA and EIIAGlc of the glucose-specific phosphotransferase system was examined in vivo using a bacterial two-hybrid system. Results: The dctA promoter region contains a class I cAMP-CRP-binding site at position −81.5 and a DcuR-binding site at position −105.5. DcuR, the response regulator of the C4-DC-activated DcuS-DcuR two-component system, and cAMP-CRP stimulate dctA expression. The expression of dctA is subject to the influence of various carbohydrates via cAMP-CRP, which differently modulate cAMP levels. Here we show that EIIAGlc of the glucose-specific phosphotransferase system strongly interacts with DctA, potentially resulting in the exclusion of C4-DCs when preferred carbon substrates, such as sugars, are present. In contrast to the classical inducer exclusion known for lactose permease LacY, inhibition of C4-DC uptake into the cytoplasm affects only its role as a substrate, but not as an inducer since DcuS detects C4-DCs in the periplasmic space (“substrate exclusion”). The work shows an interplay between cAMP-CRP and the DcuS-DcuR regulatory system for the regulation of dctA at both transcriptional and posttranslational levels. Conclusion: The study highlights a hierarchical interplay between global (cAMP-CRP) and specific (DcuS-DcuR) regulation of dctA at the transcriptional and posttranslational levels. The integration of global and specific transcriptional regulation of dctA, along with the influence of EIIAGlc on DctA, fine-tunes C4-DC catabolism in response to the availability of other preferred carbon sources. It attributes DctA a central role in the control of aerobic C4-DC catabolism and suggests a new role to EIIAGlc on transporters (control of substrate uptake by substrate exclusion).

Read full abstract
Open Access
Screening and Characterization of a Chryseobacterium timonianum Strain with Aflatoxin B1 Removal Ability.

Aflatoxin B1 (AFB1) is a potent hepatocarcinogenic mycotoxin found in animal feed and human food components. AFB1 contamination poses severe food safety and economic consequences. In this study, we used a coumarin-selective medium to isolate bacterial strains that can remove AFB1. Among the isolated bacterial strains, strain c4a exhibited the highest AFB1 removal activity. This strain was subjected to biochemical and phylogenetic characterization. The AFB1 removal activity of the extracellular supernatant of this strain was optimized for growth medium, reaction temperature, pH, and metal ions. The degradation products were analyzed using UPLC-ESI MS/MS. Strain c4a was found to be most closely related to Chryseobacterium timonianum. The extracellular supernatant of C. timonianum c4a grown in a modified nutrient broth (with gelatin peptone and beef extract in a 4:1 ratio) demonstrated the highest AFB1 removal activity when incubated with 1 ppm AFB1 at 60°C, pH 8, and Mn2+ or Mg2+ supplementation for 72 h. Surprisingly, the autoclaved extracellular supernatant also retained AFB1 removal activity. UPLC-ESI MS/MS analysis suggested that AFB1 was transformed into a metabolite (m/z value 285.08) by water molecule addition on furan ring double bond. The AFB1 removal activity of C. timonianum c4a was extracellular, constitutive, and highly thermostable, structurally transforming AFB1 into a much less toxic product. Herein, we present the first evidence of thermostable AFB1 removal activity of a strain belonging to C. timonianum.

Read full abstract
Open Access