Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Comparative study of fibers extracted from the stems and roots of the Cameroonian pennissetum purpureum for their applications in compressed earth brick reinforcement and textile engineering

This work focuses on the extraction and experimental characterization of pennisetum purpureum fibers extracted from stems and roots, harvested in the Batié Kingdom, in the West Region of Cameroon. After extracting fibers using the boiling water technique, they are chemically treated to improve their properties and performance and to facilitate their incorporation into various composite materials. For the physical characterizations, it is measured: the absolute and apparent densities, the linear mass, the water absorption rate, and the diameter via the microscope. The mean values of the diameters and the measure of their frequency distributions are calculated, followed by the statistical analysis using the maximum entropy principle, in order to find the most probable diameter necessary for technological applications. For the mechanical properties, only the tensile tests are performed, with the determination of the young modulus of both the stems and roots. The results thus obtained showed that the fibers of the stems have an absolute density of (1.35 g/cm3), a linear mass of (54.6 tex), an apparent density of (0.45 g/cm3), a water content of (12.73%), an absorption rate of (142.46%), a porosity of (65.91%), a mean diameter of (7 mm), an elastic modulus of (3.98 GPa), a tensile strength of value of (1186.59 MPa) and an elongation of 16.17%, while the root fibers have an absolute density of (1.34 g/cm3), a linear mass (16.76 tex), an apparent density of (0.37845 g/cm3), a water content of (12.25%), an absorption rate of (193.16%), a porosity of (71.92%), a diameter of (4 mm), an elastic modulus of (1.55 GPa), a tensile strength of a value of (1960.35 MPa) and an elongation of 60.6%. Thus, the fibers of the stems have good mechanical properties, which make them an appropriate material in several applications, such as the reinforcement of composite materials.

Read full abstract
Open Access Just Published
Physico-mechanical characterization of compressed earth blocks reinforced with waste fibers from calamus rotang: Case of the elastic soil of western region of Cameroon

In order to enhance the value of local materials and contribute to reducing construction costs in Cameroon, rattan waste is used to reinforce compressed earth blocks (CEB). This main work’s objective is the study of the effect of rattan waste on the physical and mechanical properties of CEB. For this, a soil sample taken in the western region of Cameroon, more precisely in Bangangté, was analyzed, the analysis includes the granulometric analysis, the Atterberg limits, and the Proctor test. Then the CEB samples with different rattan waste contents, that is 0%, 2%, 4% and 6%, were developed for a compaction stress of 7.5 MPa. These different samples were characterized through mechanical and physical tests carried out in the laboratory. It appears that the blocks reinforced with 2% of rattan waste have better mechanical characteristics, respectively 0.70 MPa in three-point bending and 3.04 MPa in compression. On the other hand, the presence of rattan wastes has a positive effect on the mechanical behavior of the composite, by increasing its ductility compared to the fragile behavior of the control block, which is observed during crushing. Thus the mechanical properties of CEB improve with the incorporation of rattan waste, which is optimal for a content of 2%. But they increase the material's porosity, and then its sensitivity to water unlike the control CEB.

Read full abstract
Open Access Just Published