Sort by
Patch growth of seashore paspalum (Paspalum vaginatum) treated with inorganic fertilizer and organic biostimulant

Inorganic fertilizers are often used in the United States in golf courses putting green maintenance. We used milled plant biomass on putting greens to test the hypothesis that organic biostimulants used in putting green maintenance can achieve similar results as inorganic fertilizers. Dilapidated putting greens, #4 and #14, with conspicuous patches at the L.E. Ramey Golf Course in Kingsville, TX, were selected for the study. Each green was split in half with one half selected for treatment and the other half maintained as the control and treated with NPK. Milled Medicago sativa L. mixed with milled high auxin-containing plant species in a ratio of 10:1 was used to test the hypothesis. The mixture was applied in the bio-treated section of the two greens while the golf course management continued to apply inorganic fertilizers on the control section of the study greens. Patch count on the greens was conducted once a week utilizing a randomly placed 1 by 1 m quadrant. Also, soil moisture measurement was taken twice a week on the greens to understand soil moisture retention due to the treatments. Patch count indicates that the bio-treated sections grew and filled significantly faster than the sections treated with inorganic fertilizers. Regression analysis of data collected between July 13th and July 27th indicates a strong linear biostimulant/patch growth relationship (R2 = 0.75 and 0.92) on Greens #4 and #14 respectively. Also, soil moisture data indicates significantly higher moisture retention on the putting green sections treated with the biostimulant.

Open Access
Relevant
Effects of precipitation and temperature on the species composition and pollinator efficiency of ocimum kilimandscharicum flower visitors in Kakamega forest ecosystem

Pollination, a critical ecosystem service in the maintenance of biodiversity is on the decline due to several factors including habitat loss, exotic pest invasions, pollution, overharvesting, climate, and land use changes. This study analyzed flower visitors’ activity of Ocimum kilimandscharicum in the Kakamega forest. Specifically, the study sought to: (i) assess the effects of temperature and precipitation on flower visitors’ diversity and (ii) identify the most efficient flower visitor using seed set analysis. Data on pollinators were collected through direct observation and sweep-netting and the bagging method in which, flowers were covered using a pollinator bag pre-anthesis and allowed a single visit from a flower visitor. Seed sets from the flowers were collected and counted. Six study sites were identified along two transects each 2.5 km long and labeled A to F. Sampling was done from 7:30 am to 4:00 pm, three days a week for five months consecutively. Secondary data on bee species and their characteristics were used in identification. There were no significant correlations between temperature and diversity (r = -0.509, p = 0.3810), precipitation and diversity (r = 0.377; p = 0.531), temperature and species abundance (r = -0.00618; p = 0.9921), species abundance and precipitation (r = -0.248; p = 0.688), temperature and the species richness of flower-visiting insects (r = -0.729 p = 0.1623) and between precipitation and species richness (r = 0.824; p = 0.08592). The highest number of seed sets, 12,944 was collected under the Apis mellifera making this species, the most efficient pollinator. This study clearly shows that Ocimum kilimandscharicum flower visitors are important in pollination where the higher number of visits translates into higher numbers of seeds set.

Open Access
Relevant
Unveiling the draft genome sequence of diesel-degrading Paenibacillus sp. strain d9, a surfactant producer isolated from diesel-contaminated soil

Introduction: Gram-positive bacteria, particularly Bacillus and Paenibacillus spp., have gained significant attention for their potential in environmental bioremediation (biosurfactant production) and diverse biotechnological applications. Among these, Paenibacillus sp. D9, isolated from oil-contaminated soil, has shown diesel and engine oil degradation capabilities and biosurfactant production. However, its role in alkane degradation remains unexplored. Methodology and Result: To shed light on its unique attributes, we conducted whole-genome sequencing of Paenibacillus sp. D9 using the Illumina HiSeq 2000 platform. The draft genome comprised 56 contigs and 7 scaffolds, with a size of 5,645,302 bp at 157.94× coverage and a G + C content of 58.13%. A total of 9,950 Coding Sequences (CDSs) were predicted, and functional annotation revealed 3,283 (43.19%) and 3,155 (58.8%) putative genes based on Bacterial Annotation System (BASys) and Rapid Annotation using the Subsystems Technology (RAST) subsystem categorization, respectively. Furthermore, 93 tRNA and 23 rRNA genes were identified. Conclusion: This genome announcement provides valuable insights into the genetic potential of Paenibacillus sp. D9 and paves the way for future research in its biotechnological applications.

Open Access
Relevant
Smallholder farmers’ perception on climate change, information needs and adaptation strategies for improved pineapple (Ananas comosus) production in Awaé Cameroon

This study examined smallholder pineapple farmers’ experiences of climate variability and change in production, as well as ranked adaptation and information source options using data from primary sources. The primary data consisted of a survey on pineapple growing in Awaé. The analysis revealed that pineapple farmers experience climate variability and change evidenced mainly through irregular rainfall patterns (100%), excessive heat (97.14%), drying of streams (85.71%), and rising temperatures (77.14%). These variabilities cause a change in color and taste (40.00 and 45.71% respectively), a reduction in fruit size and yield (68.57 and 100% respectively), and consequently, a reduction in income from pineapple production. Farmers identify deforestation (54.29 ± 0.51%), bush fires (34.29 ± 0.48%) as the major causes of climate change. Although the use of soil conservation practices (e.g. mixed and rotational cropping), bush fallow and crop diversification emerged as the three main adaptation options employed by smallholder pineapple farmers, climate change has the potential to reduce pineapple production in Awaé. Therefore there is a need for future studies to identify adaptation measures that will help improve pineapple production in the area. These farmers are willing to receive information commencement of rain, the prediction of stopping rain, the impact, adaptation strategies, and mitigation strategies to climate change. They can be informed through phone text messages, television, radio, and even demonstration methods for them to effectively follow up on climate change to better improve their pineapple production in Awaé.

Open Access
Relevant
Nutrition cycles in sessile oak (Quercus petraea Liebl.), Norway spruce (Picea abies L.Karst) and European beech (Fagus sylvatica L.) stands from Central Romania

In Romania, the sessile oak is the widest spread species of all native oak species, forming a lower story of vegetation. The European beech and Norway spruce cover 50% of the Romanian forest area. The purpose of this study was to analyze the variability of the leaf nutrients, as well as of the soil nutrients, for sessile oak, Norway spruce and European beech stands situated under different site conditions. The studied sites are located in the southern part of the Carpathian Mountains at altitudes varying from 600 m to 1300 m. Leaves samples were collected from twenty sessile oak trees, in three moments during the growing season. The same eight elements in total form were determined for soil and leave too: N, P, K, Ca, Mg, Fe, Cu and Zn. Leaves samples for beech and spruce were collected in the II Level Intensive Monitoring Grid of the ICP Forests Programme. The paper focuses on the seasonal concentration variation of eight macro elements in leaves and the correlations between the concentration of the macro elements in soil and litter. In addition, the study highlighted the degree of influence exerted by some soil properties on the foliar concentration of nutrients (through multiple regressions). The obtained results show different mobility of the elements and a greater variability was noticed in the case of certain elements. The same three soil properties were noticed to influence the foliar nitrogen concentration.

Open Access
Relevant