Sort by
Existence of optimal virtual element weights for mmWave FMCW MIMO radar based heart rate estimation

AbstractMeasuring heart rate is a critical component of assessing cardiac health and detecting potential heart diseases at an early stage. Various sensors, including electrocardiogram and photoplethysmograph, are commonly employed for this purpose. However, these conventional methods necessitate direct contact with the patient's skin which may be impractical or uncomfortable in situations involving patients with skin diseases or burn injuries. To address these limitations, a concerted effort has been to develop non‐contact methods leveraging frequency‐modulated continuous‐wave multiple‐input multiple‐output radar systems. Recent studies have illustrated the sensitivity of the phase component of received signals to micro‐motion, presenting a promising avenue for effective heart rate estimation. However, existing literature predominantly focuses on single‐antenna setups, overlooking the potential benefits offered by multiple‐input multiple‐output systems, which provide diverse channels with varying precision levels. This correspondence introduces a novel phase extraction model grounded in the argument of the analytic signal derived from both in‐phase and quadrature channels. Furthermore, leveraging the normal equation, we establish the feasibility of optimizing weights assigned to individual virtual antennas to achieve a robust approximation of ground truth data.

Open Access Just Published
Relevant
Anomaly detection in network traffic with ELSC learning algorithm

AbstractIn recent years, the internet has not only enhanced the quality of our lives but also made us susceptible to high‐frequency cyber‐attacks on communication networks. Detecting such attacks on network traffic is made possible by intrusion detection systems (IDS). IDSs can be broadly divided into two groups based on the type of detection they provide. According to the established rules, the first signature‐based IDS detects threats. Secondly, anomaly‐based IDS detects abnormal conditions in the network. Various machine and deep learning approaches have been used to detect anomalies in network traffic in the past. To improve the detection of anomalies in network traffic, researchers have compared several machine learning models, such as support vector machines (SVM), logistic regressions (LRs), K‐Nearest Neighbour (KNN), Nave Bayes (NBs), and boosting algorithms. The accuracy, precision, and recall of many studies have been satisfactory to an extent. Therefore, this paper proposes an ensemble learning‐based stacking classifier (ELSC) to achieve a better accuracy rate. In the proposed ELSC algorithm, KNN, NB, LR, and Decision Trees (DT) served as the base classifiers, while SVM served as the meta classifier. Based on a Network Intrusion detection dataset provided by Kaggle.com, ELSC is compared to base classifiers such as KNN, NB, LR, DT, SVM, and Linear Discriminate Analysis. As a result of the simulations, the proposed ELBS stacking classifier was found to outperform the other comparative models and converge with an accuracy of 99.4%.

Open Access Just Published
Relevant