Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Targeted Strategies for Degradation of Key Transmembrane Proteins in Cancer.

Targeted protein degradation is an attractive technology for cancer treatment due to its ability to overcome the unpredictability of the small molecule inhibitors that cause resistance mutations. In recent years, various targeted protein degradation strategies have been developed based on the ubiquitin-proteasome system in the cytoplasm or the autophagy-lysosomal system during endocytosis. In this review, we describe and compare technologies for the targeted inhibition and targeted degradation of the epidermal growth factor receptor (EGFR), one of the major proteins responsible for the onset and progression of many types of cancer. In addition, we develop an alternative strategy, called alloAUTO, based on the binding of new heterocyclic compounds to an allosteric site located in close proximity to the EGFR catalytic site. These compounds cause the targeted degradation of the transmembrane receptor, simultaneously activating both systems of protein degradation in cells. Damage to the EGFR signaling pathways promotes the inactivation of Bim sensor protein phosphorylation, which leads to the disintegration of the cytoskeleton, followed by the detachment of cancer cells from the extracellular matrix, and, ultimately, to cancer cell death. This hallmark of targeted cancer cell death suggests an advantage over other targeted protein degradation strategies, namely, the fewer cancer cells that survive mean fewer chemotherapy-resistant mutants appear.

Read full abstract
Open Access
Cell-Free Protein Synthesis by Diversifying Bacterial Transcription Machinery

We have evaluated several approaches to increase protein synthesis in a cell-free coupled bacterial transcription and translation system. A strong pargC promoter, originally isolated from a moderate thermophilic bacterium Geobacillus stearothermophilus, was used to improve the performance of a cell-free system in extracts of Escherichia coli BL21 (DE3). A stimulating effect on protein synthesis was detected with extracts prepared from recombinant cells, in which the E. coli RNA polymerase subunits α, β, β’ and ω are simultaneously coexpressed. Appending a 3′ UTR genomic sequence and a T7 transcription terminator to the protein-coding region also improves the synthetic activity of some genes from linear DNA. The E. coli BL21 (DE3) rna::Tn10 mutant deficient in a periplasmic RNase I was constructed. The mutant cell-free extract increases by up to four-fold the expression of bacterial and human genes mediated from both bacterial pargC and phage pT7 promoters. By contrast, the RNase E deficiency does not affect the cell-free expression of the same genes. The regulatory proteins of the extremophilic bacterium Thermotoga, synthesized in a cell-free system, can provide the binding capacity to target DNA regions. The advantageous characteristics of cell-free systems described open attractive opportunities for high-throughput screening assays.

Read full abstract
Open Access
Rational Engineering of the Substrate Specificity of a Thermostable D-Hydantoinase (Dihydropyrimidinase).

D-hydantoinases catalyze an enantioselective opening of 5- and 6-membered cyclic structures and therefore can be used for the production of optically pure precursors for biomedical applications. The thermostable D-hydantoinase from Geobacillus stearothermophilus ATCC 31783 is a manganese-dependent enzyme and exhibits low activity towards bulky hydantoin derivatives. Homology modeling with a known 3D structure (PDB code: 1K1D) allowed us to identify the amino acids to be mutated at the substrate binding site and in its immediate vicinity to modulate the substrate specificity. Both single and double substituted mutants were generated by site-directed mutagenesis at appropriate sites located inside and outside of the stereochemistry gate loops (SGL) involved in the substrate binding. Substrate specificity and kinetic constant data demonstrate that the replacement of Phe159 and Trp287 with alanine leads to an increase in the enzyme activity towards D,L-5-benzyl and D,L-5-indolylmethyl hydantoins. The length of the side chain and the hydrophobicity of substrates are essential parameters to consider when designing the substrate binding pocket for bulky hydantoins. Our data highlight that D-hydantoinase is the authentic dihydropyrimidinase involved in the pyrimidine reductive catabolic pathway in moderate thermophiles.

Read full abstract
Open Access
Rapid Diminution in the Level and Activity of DNA-Dependent Protein Kinase in Cancer Cells by a Reactive Nitro-Benzoxadiazole Compound.

The expression and activity of DNA-dependent protein kinase (DNA-PK) is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR) is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-yl)sulfanyl]-2,1,3-benzoxadiazole (NSC), bearing a nitro-benzoxadiazole (NBD) scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways. Here, we studied the behavior of DNA-PK and other DNA repair proteins in prostate cancer cells exposed to compound NSC. We showed that both the expression and activity of DNA-PKcs (catalytic subunit of DNA-PK) rapidly decreased upon exposure of cells to the compound. The decline in DNA-PKcs was associated with enhanced protein ubiquitination, indicating the activation of cellular proteasome. However, pretreatment of cells with thioglycerol abolished the action of compound NSC and restored the level of DNA-PKcs. Moreover, the decreased level of DNA-PKcs was associated with the production of intracellular hydrogen peroxide by stable dimeric forms of Cu/Zn SOD1 induced by NSC. Our findings indicate that reactive oxygen species and electrophilic intermediates, generated and accumulated during the redox transformation of NBD compounds, are primarily responsible for the rapid modulation of DNA-PKcs functions in cancer cells.

Read full abstract
Open Access
Activation of EGFR by small compounds through coupling the generation of hydrogen peroxide to stable dimerization of Cu/Zn SOD1

Activation of cell signaling by reactive chemicals and pollutants is an important issue for human health. It has been shown that lipophilic nitro-benzoxadiazole (NBD) compounds rapidly move across the plasma membrane and enhance Epidermal Growth Factor Receptor (EGFR) tyrosine phosphorylation in cancer cells. Unlike ligand-dependent activation, the mechanism of this induction relies on the generation of hydrogen peroxide, which is involved in the activation of the catalytic site of the receptor and the inactivation of protein tyrosine phosphatase PTP-1B. Production of H2O2 during redox transformation of NBD compounds is associated with the transition of a monomeric form of Cu/Zn superoxide dismutase 1 (SOD1) to stable dimers. The highly stable and functionally active SOD1 dimer, in the absence of adequate activities in downstream reactions, promotes the disproportionate production and accumulation of intracellular hydrogen peroxide shortly after exposure to NBD compounds. The intrinsic fluorescence of small compounds was used to demonstrate their binding to SOD1. Our data indicate that H2O2 and concomitantly generated electrophilic intermediates behave as independent entities, but all contribute to the biological reactivity of NBD compounds. This study opens a promising path to identify new biomarkers of oxidative/electrophilic stress in the progression of cancer and other diseases.

Read full abstract
Open Access
Assessment of new cationic porphyrin binding to plasma proteins by planar microarray and spectroscopic methods

Porphyrins have a unique aromatic structure determining particular photochemical properties that make them promising photosensitizers for anticancer therapy. Previously, we synthesized a set of artificial porphyrins by modifying side-chain functional groups and introducing different metals into the core structure. Here, we have performed a comparative study of the binding properties of 29 cationic porphyrins with plasma proteins by using microarray and spectroscopic approaches. The porphyrins were noncovalently immobilized onto hydrogel-covered glass slides and probed to bio-conjugated human and bovine serum albumins, as well as to human hemoglobin. The signal detection was carried out at the near-infrared fluorescence wavelength (800 nm) that enabled the effect of intrinsic visible wavelength fluorescence emitted by the porphyrins tested to be discarded. Competition assays on porphyrin microarrays indicated that long-chain fatty acids (FAs) (palmitic and stearic acids) decrease porphyrin binding to both serum albumin and hemoglobin. The binding affinity of different types of cationic porphyrins for plasma proteins was quantitatively assessed in the absence and presence of FAs by fluorescent and absorption spectroscopy. Molecular docking analysis confirmed results that new porphyrins and long-chain FAs compete for the common binding site FA1 in human serum albumin and meso-substituted functional groups in porphyrins play major role in the modulation of conformational rearrangements of the protein.

Read full abstract
Open Access
A highly sensitive near‐infrared fluorescent detection method to analyze signalling pathways by reverse‐phase protein array

The comprehensive and quantitative analysis of the protein phosphorylation patterns in different cellular context is of considerable and general interest. The ability to quantify phosphorylation of discrete signalling proteins in large collections of biological samples would greatly favour the development of systems biology in the field of cell signalling. Reverse-phase protein array (RPPA) potentially represents a very attractive approach to map signal transduction networks with high throughput. In the present report, we describe an improved detection method for RPPA combining near-infrared with one or two rounds of tyramide-based signal amplification. The LOQ was lowered from 6.84 attomoles with a direct detection protocol to 0.21 attomole with two amplification steps. We validated this method in the context of intracellular signal transduction triggered by follicle-stimulating hormone in HEK293 cells. We consistently detected phosphorylated proteins in the sub-attomole range from less than 1 ng of total cell extracts. Importantly, the method correlated with Western blot analysis of the same samples while displaying excellent intra- and inter-slide reproducibility. We conclude that RPPA combined with amplified near-infrared detection can be used to capture the subtle regulations intrinsic to signalling network dynamics at an unprecedented throughput, from minute amounts of biological samples.

Read full abstract
Open Access
Dynamin 2 mutations associated with human diseases impair clathrin-mediated receptor endocytosis

Dynamin 2 (DNM2) is a large GTPase involved in the release of nascent vesicles during endocytosis and intracellular membrane trafficking. Distinct DNM2 mutations, affecting the middle domain (MD) and the Pleckstrin homology domain (PH), have been identified in autosomal dominant centronuclear myopathy (CNM) and in the intermediate and axonal forms of the Charcot-Marie-Tooth peripheral neuropathy (CMT). We report here the first CNM mutation (c.1948G>A, p.E650 K) in the DNM2 GTPase effector domain (GED), leading to a slowly progressive moderate myopathy. COS7 cells transfected with DNM2 constructs harboring a disease-associated mutation in MD, PH, or GED show a reduced uptake of transferrin and low-density lipoprotein (LDL) complex, two markers of clathrin-mediated receptor endocytosis. A decrease in clathrin-mediated endocytosis was also identified in skin fibroblasts from one CNM patient. We studied the impact of DNM2 mutant overexpression on epidermal growth factor (EGF)-induced extracellular signal-regulated kinase 1 (ERK1) and ERK2 activation, known to be an endocytosis- and DNM2-dependent process. Activation of ERK1/2 was impaired for all the transfected mutants in COS7 cells, but not in CNM fibroblasts. Our results indicate that impairment of clathrin-mediated endocytosis may play a role in the pathophysiological mechanisms leading to DNM2-related diseases, but the tissue-specific impact of DNM2 mutations in both diseases remains unclear.

Read full abstract
PTEN Contributes to Profound PI3K/Akt Signaling Pathway Deregulation in Dystrophin-Deficient Dog Muscle

Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy, and although the genetic basis of this disease is well defined, the overall mechanisms that define its pathogenesis remain obscure. Alterations in individual signaling pathways have been described, but little information is available regarding their putative implications in Duchenne muscular dystrophy pathogenesis. Here, we studied the status of various major signaling pathways in the Golden Retriever muscular dystrophy dog that specifically reproduces the full spectrum of human pathology. Using antibody arrays, we found that Akt1, glycogen synthase kinase-3beta (GSK3beta), 70-kDa ribosomal protein S6 kinase (p70S6K), extracellular signal-regulated kinases 1/2, and p38delta and p38gamma kinases all exhibited decreased phosphorylation in muscle from a 4-month-old animal with Golden Retriever muscular dystrophy, revealing a deep alteration of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways. Immunohistochemistry analysis revealed the presence of muscle fibers exhibiting a cytosolic accumulation of Akt1, GSK3beta, and phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN), an enzyme counteracting PI3K-mediated Akt activation. Enzymatic assays established that these alterations in phosphorylation and expression levels were associated with decreased Akt and increased GSK3beta and PTEN activities. PTEN/GSK3beta-positive fibers were also observed in muscle sections from 3- and 36-month-old animals, indicating long-term PI3K/Akt pathway alteration. Collectively, our data suggest that increased PTEN expression and activity play a central role in PI3K/Akt/GSK3beta and p70S6K pathway modulation, which could exacerbate the consequences of dystrophin deficiency.

Read full abstract
Open Access