Sort by
Sources of seasonal water supply forecast uncertainty during snow drought in the Sierra Nevada

AbstractUncertainty attribution in water supply forecasting is crucial to improve forecast skill and increase confidence in seasonal water management planning. We develop a framework to quantify fractional forecast uncertainty and partition it between (1) snowpack quantification methods, (2) variability in post‐forecast precipitation, and (3) runoff model errors. We demonstrate the uncertainty framework with statistical runoff models in the upper Tuolumne and Merced River basins (California, USA) using snow observations at two endmember spatial resolutions: a simple snow pillow index and full‐catchment snow water equivalent (SWE) maps at 50 m resolution from the Airborne Snow Observatories. Bayesian forecast simulations demonstrate a nonlinear decrease in the skill of statistical water supply forecasts during warm snow droughts, when a low fraction of winter precipitation remains as SWE. Forecast skill similarly decreases during dry snow droughts, when winter precipitation is low. During a shift away from snow‐dominance, the uncertainty of forecasts using snow pillow data increases about 1.9 times faster than analogous forecasts using full‐catchment SWE maps in the study area. Replacing the snow pillow index with full‐catchment SWE data reduces statistical forecast uncertainty by 39% on average across all tested climate conditions. Attributing water supply forecast uncertainty to reducible error sources reveals opportunities to improve forecast reliability in a warmer future climate.

Just Published
Relevant
Hydrogeologic and hydrochemical inputs to emerging wetlands on the shores of the receding Salton Sea, California

AbstractThe Salton Sea has experienced significant recession over the past two decades due to changes in the diversion of Colorado River water to the Salton Trough for agricultural irrigation. As a result, wetlands have emerged in some exposed playa areas along the Salton Sea, primarily in regions with extensive agricultural return flows and agricultural drainage. One notable wetland system, known as the Bombay Beach Wetlands, has formed on the north shore of the Salton Sea, in an area devoid of agriculture. In many other areas with limited or no agriculture, wetlands have failed to develop, leaving exposed playa surfaces as the Salton Sea recedes. These dry playa surfaces pose a significant threat to the health of local residents due to the presence of toxins contained in windblown dust associated with playa deposits. In this study, stable water isotope data, combined with other hydrological information, led to identification of two potential water sources for the Bombay Beach Wetlands. The first possibility proposes that thermal artesian waters alone contribute to the wetlands' water source, while the second hypothesis involves a combination of drainage from Salton Sea bank storage water mixing with the thermal artesian water. The thermal artesian water discharges into drainage channels that flow towards the Bombay Beach Wetlands, initially devoid of possible groundwater baseflow until reaching the wetlands. Studies were subsequently done along the full reach of the drainage channels receiving thermal artesian water. Dissolved solids content, P and N nutrients, arsenic, and stable water isotopes were tested synoptically along the drainage channels. Channel investigations led to the development of a novel model of salinization, which is linked to channel discharge, channel morphometrics, and channel incision.

Open Access Just Published
Relevant
Hydro‐modeling the ecosystem impact of wastewater reuse under climate change: A case study in upper Red River basin, Oklahoma

AbstractWater reuse, as a viable option for water supply, must be implemented to minimize the adverse impacts on stream ecosystems that previously received this wastewater effluent. In the State of Oklahoma (OK), USA, local communities have implemented wastewater reuse, and many seek to expand the reuse programs. This study presents a hydro‐modeling analysis based on the Coupled Routing and Excess STorage with VECtor routing (CREST‐VEC) model focusing on the potential ecosystem impacts and societal benefits of wastewater reuse under climate change in the OK portion of the Red River basin. First, a CREST‐VEC model is established for the upper Red River basin and validated against observed streamflow for a 30‐year historical period (1990–2020). Based on the established model, we then assess the sensitivity of ecosystem impact to various climate change scenarios and hypothetical wastewater reuse scenarios. Results show that dominant effects of climate change cause the annual time below environmental flow to increase in the next 30 years, which constrains the room to implement wastewater reuse. However, at sub‐catchment scale, the analyses identify viable locations for allocating wastewater reuse while maintaining ecosystem health. The results also reveal that wastewater reuse brings about the most societal water benefits at minimal cost of ecosystem health under representative concentration pathway (RCP) 2.6 followed by RCP 4.5 and then RCP 8.5. Overall, the study demonstrates capabilities of the hydro‐modeling framework in developing water management plans facing the changing climate.

Relevant
Effects of a forested state park on stream nutrient concentrations in an agriculturally dominated watershed in the U.S. Midwest

AbstractAgricultural land cover in the U.S. Midwest is a major source of nutrient pollution that has led to impairment of stream water quality. This study examines the impact of a forested state park on nutrient concentrations within an agriculturally dominated watershed. Water samples were collected over a 2‐year study period from eight stream sampling sites along four creeks and processed for total nitrogen (TN), nitrate (), total phosphorus (TP), and orthophosphate (). Hydrology, channel morphology, and remotely sensed land cover and vegetation data were also collected and analyzed within the study area. Results indicate that water quality responses to a forested state park vary between TN, , TP, and , and water quality variables are uniquely influenced by watershed and stream characteristics. The greatest water quality benefits most frequently occurred within the two smallest study streams with the greatest residence times and proportion of watershed areas within the forested state park. Overall, the greatest improvements to water quality occurred during periods of low stream discharge and when riparian vegetation was greenest. The results of this study suggest that conservation of forested areas within agriculturally dominated watersheds can provide water quality improvements in the U.S. Midwest. Targeting watersheds that drain small streams with long residence times for conservation may be most beneficial to improving water quality.

Relevant
Distinguishing climate change impacts from development impacts on summer low flows in Puget Sound streams

AbstractIn many Puget Sound streams, summer low flows have declined in recent decades, and are projected to decline further. Concerns that humans may be responsible have focused on two main causes: anthropogenic climate warming and aspects of development, including urbanization and the abstraction of groundwater. Difficulty in distinguishing their relative impacts has hindered the conception and design of strategies intended to restore and enhance future low flows. We analyzed trends in low flows over recent decades, separating the effects of these factors in two steps. First, low flow variation was assessed in 23 basins that are minimally disturbed by development. Low flows varied over time, and with elevation, in complex ways, consistent with the loss of snowpack at elevations >~800 m. Second, low flow trends in developed lowland basins were compared with trends in a minimally developed lowland reference basin. Flows in developed basins deviated from a purely climate‐driven pattern in unique ways, reflecting unique histories of development. In 21 lowland basins, there was no consistent decline in low flows with increasing impervious land cover, at least between 2001 and 2019. Effects on low flows of private wells alone could be assessed in only one basin, but no impact was evident. An assessment of projected relative impacts on low flows of urbanization, rural development, and anthropogenic warming suggested that the latter will be the greatest.

Relevant
Wildflowers and compost amendment can improve infiltration in soils impacted by construction

AbstractVegetation is an important component of stormwater control measures, as vegetation can reduce erosion and runoff. While grass is typically used in stormwater control measures, wildflowers can be planted to reduce maintenance and improve pollinator habitat. Previous studies have established that tillage followed by establishment of a vigorous vegetation stand can increase infiltration relative to compacted soils. Compost can also improve soil physical properties and fertility. The goal of this study was to evaluate potential improvements in infiltration using tillage together with compost and either grass or wildflowers. Wildflowers or grass were planted on tilled soil with or without compost at three sites in North Carolina. Bulk density, infiltration rate, root mass density, and penetration resistance were measured every 6 months over a 30‐month period. A subset of plots received wheel traffic from a mower. Compost application reduced bulk density compared to tillage alone. Compost improved infiltration at two sites (46%–50%). Wildflowers improved infiltration at all sites (30%–43%) compared to grass. Few differences were observed in root mass and penetration resistance. Mower traffic reduced soil improvements more in grassed plots than wildflower plots due to higher mowing frequency. Results suggest compost and/or wildflowers together with tillage (at establishment) provide viable options to improve soil conditions and infiltration rate in construction impacted soils.

Open Access
Relevant