High-level ab initio calculations, including variants of the Wn and G3 procedures, have been used to determine the structures and heats of formation of the alkali metal and alkaline earth metal oxides and hydroxides (M2O, MOH: M = Li, Na, and K; MO, M(OH)2: M = Be, Mg, and Ca). Our best structures were obtained at the CCSD(T)(riv,rv)/aug‘-cc-pWCVQZ level and are in uniformly close agreement with available experimental data, with a mean absolute deviation from experimental metal−oxygen bond lengths of just 0.007 A.Structures obtained with CCSD(T)/cc-pWCVQZ, B3-LYP/cc-pVTZ, B3-LYP/6-31G(2df,p), and MP2(full)/6-311+G(3df,2p) are also in good agreement with experiment. Zero-point vibrational energies and enthalpy temperature corrections are found to be relatively insensitive to the various procedures employed. However, the heats of formation for these molecules are challenging targets for high-level ab initio procedures. In the Wn-type procedures, it is found that expanding the correlation space on the meta...
Read full abstract