In order to discuss the response of soil nutrient content, stoichiometric ratio, and dynamic nutrient balance to the addition of multiple restrictive nutrients, the correlation between available nutrients and total nutrients in soil, as well as the indication of soil total and available stoichiometric characteristics, were studied in a desert grassland subjected to 4 years of nutrient addition treatments. The Ningxia desert grassland was used as the research object to carry out nitrogen (N) and phosphorus (P) addition experiments. The experiment included four treatments:control (CK), N addition[10 g·(m2·a)-1], P addition[10 g·(m2·a)-1], and NP co-addition (10 g·(m2·a)-1 N+10 g·(m2·a)-1 P). The results showed that:① in the fourth year of nutrient addition, soil total nitrogen (TN) content was significantly increased. The N:P ratio was significantly increased by N addition, and soil organic carbon (SOC) content was significantly increased by P addition and NP co-addition. In the third and fourth years of nutrient addition, the soil available N:P ratio (AN:AP) was significantly increased by N addition; N addition and NP co-addition significantly increased the content of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) but significantly reduced the soil available C:N ratio. P addition and NP co-addition significantly increased total phosphorus (TP) and soil available phosphorus (AP), whereas it significantly reduced the soil total and available C:P and N:P ratios. ② The interaction between N addition and P addition had a combined effect on NH4+-N, AP, available C:N, and AN:AP ratio of desert grassland. ③ The soil C:N ratio was relatively stable in desert grassland, soil N:P ratio was mainly limited by soil TP content, and the soil available C:P and AN:AP ratios were mainly limited by soil AP content. ④ There were cumulative effects of N and P additions on soil N, SOC, and inorganic nitrogen. N limitation in desert grassland was alleviated by N addition, whereas it was aggravated by P addition and NP co-addition. The variation coefficients of soil available stoichiometric characteristics were higher than that of soil total stoichiometric characteristics. Soil available stoichiometry was more sensitive to N and P addition than soil total stoichiometry in desert grassland, which could better reflect the effects of N and P addition on soil ecological stoichiometry and as a rapid indicator of soil nutrient status in desert grassland.
Read full abstract