Since its launch in 2004, the Swift satellite has monitored the X-ray afterglows of several hundred Gamma-Ray Bursts, and revealed that their X-ray light-curves are more complex than previously thought, exhibiting up to three power-law segments. Energy injection into the relativistic blast-wave energizing the burst ambient medium has been proposed most often to be the reason for the X-ray afterglow complexity. We examine 117 light-curve breaks of 98 Swift X-ray afterglows, selected for their high-quality monitoring and well-constrained flux decay rates. Thirty percent of afterglows have a break that can be an adiabatic jet-break, in the sense that there is one variant of the forward-shock emission from a collimated outflow model that can account for both the pre- and post-break flux power-law decay indices, given the measured X-ray spectral slope. If allowance is made for a steady energy injection into the forward-shock, then another 56 percent of X-ray afterglows have a light-curve break that can be explained with a jet-break. The remaining 12 percent that are not jet-breaks, as well as the existence of two breaks in 19 afterglows (out of which only one can be a jet-break), suggest that some X-ray breaks arise from a sudden change in the rate at which energy is added to the blast-wave, and it may well be that a larger fraction of X-ray light-curve breaks are generated by that mechanism. To test the above two mechanisms for afterglow light-curve breaks, we derive comprehensive analytical results for the dynamics of outflows undergoing energy injection and for their light-curves, including closure relations for inverse-Compton afterglows and for the emission from spreading jets interacting with an wind-like ambient medium.
Read full abstract