At least nine inherited neurodegenerative diseases, including Huntington's, are caused by poly(L-glutamine) (polyGln, polyQ) expansions > 35-40 repeats in widely or ubiquitously expressed proteins. Except for their expansions, these proteins have no sequence homologies, and their functions mostly remain unknown. Although each disease is characterized by a distinct pathology specific to a subset of neuronal cells, the formation of neuronal intranuclear aggregates containing protein with an expanded polyQ is the hallmark and common feature to most polyQ disorders. The neurodegeneration is thought to be caused by a toxic gain of function that occurs at the protein level and depends on the length of the expansion: Longer repeats cause earlier age of onset and more severe symptoms. To address whether there is a structural difference between polyQ having < 40 versus > 40 residues, we undertook an X-ray fiber diffraction study of synthetic polyQ peptides having varying numbers of residues: Ac-Q8-NH2, D2Q15K2, K2Q28K2, and K2Q45K2. These particular lengths bracket both the range of normalcy (9-36 repeats) and the pathological (45 repeats), and therefore could be indicative of the structural changes expected in expanded polyQ domains. Contrary to expectations of different length-dependent morphologies, we accounted for all the X-ray patterns by slablike, beta-sheet structures, approximately 20 A thick in the beta-chain direction, all having similar monoclinic lattices. Moreover, the slab thickness indicates that K2Q45K2, rather than forming a water-filled nanotube, must form multiple reverse turns.
Read full abstract