The bioavailability of iron from a food depends on its concentration and chemical form but also on dietary factors and nutrient interactions, which are affected by storage conditions and time. Here we investigated the time-course profile of iron in a hybrid 3D-printed food composed of alternating layers of liver and lentils after 0, 5, 7, 14 and 21 days of storage at 4 °C under oxygen or nitrogen packaging. Synchrotron X-ray fluorescence highlighted major variations in iron distribution in both the animal and plant parts of the food as a function of storage conditions. FeP and FeS positive spatial correlations pointed to iron-associated compounds. X-ray absorption near-edge structure spectroscopy showed spectral signatures specific to the animal and plant mixtures, and then highlighted interactions between animal and plant parts during food storage, with a change in iron forms in the plant part.