Secure protection of sensitive data and financial transactions is of the utmost importance in the dynamic world of online trade. In this study, we present a full-stack security architecture that uses five separate algorithms: ECF, Transaction Anomaly Detection, Adaptive Threat Intelligence, Behavioral Biometric Authentication, and Dynamic Encryption Protocol. By creating encryption keys on the fly while the user logs in, the DEP method lays a solid groundwork for safe data transfer. Behavioral biometric authentication (BBA) uses DEP output to verify users based on their distinct behavior, which is an extra layer of security. By combining both current and past threat information, the ATI algorithm is able to constantly adjust security protocols, providing a preventative shield against new dangers. TAD is an expert at detecting anomalies in online purchases, which helps keep financial transactions honest. When ECF and DEP work together, they filter email content, making communication more secure. Flowcharts help to illustrate the interactions between various algorithms, which helps to understand their operations in detail. Every algorithm's importance is brought to light by an ablation study, which shows how each one contributes and how they all work together to affect the overall security posture. The suggested security framework outperforms the state-of-the-art in terms of efficacy, adaptability, and usability, according to performance evaluations conducted using a number of metrics. These findings can help decision-makers build a strong security plan that is specific to the challenges of online shopping. To conclude, the suggested framework is an integrated and complementary strategy that will strengthen online trade in the face of several cyber dangers while simultaneously protecting the confidentiality, authenticity, and availability of all associated communications and transactions.
Read full abstract