Abnormal development of the atrioventricular ring can lead to the formation of a bypass pathway and the occurrence of Wolff–Parkinson–White (WPW) syndrome. The genetic mechanism underlying the sporadic form of WPW syndrome remains unclear. Existing evidence suggests that both T-box transcription factor 3 (TBX3) and T-box transcription factor 2 (TBX2) genes participate in regulating annulus fibrosus formation and atrioventricular canal development. Thus, we aimed to examine whether single-nucleotide polymorphisms (SNPs) in the TBX3 and TBX2 genes confer susceptibility to WPW syndrome in a Han Chinese Population. We applied a SNaPshot SNP assay to analyze 5 selected tagSNPs of TBX3 and TBX2 in 230 patients with sporadic WPW syndrome and 231 sex- and age-matched controls. Haplotype analysis was performed using Haploview software. Allele C of TBX3 rs1061657 was associated with a higher risk of WPW syndrome (odds ratio [OR] = 1.41, 95% confidence interval [CI]: 1.08–1.83, P = .011) and left-sided accessory pathways (OR = 1.40, 95% CI: 1.07–1.84, P = .016). However, allele C of TBX3 rs8853 was likely to reduce these risks (OR = 0.71, 95% CI: 0.54–0.92, P = .011; OR = 0.70, 95% CI: 0.53–0.92, P = .011, respectively). The data revealed no association between TBX3 rs77412687, TBX3 rs2242442, or TBX2 rs75743672 and WPW syndrome. TBX3 rs1061657 and rs8853 are significantly associated with sporadic WPW syndrome among a Han Chinese population. To verify our results, larger sample sizes are required in future studies.
Read full abstract