The monitoring of coastal evolution (coastline and associated geomorphological features) caused by episodic and persistent processes associated with climatic and anthropic activities is required for coastal management decisions. The availability of open access, remotely sensed data with increasing spatial, temporal, and spectral resolutions, is promising in this context. The coastline of Northern Tunisia is currently showing geomorphic process, such as increasing erosion associated with lateral sedimentation. This study aims to investigate the potential of time-series optical data, namely Landsat (from 1985–2019) and Google Earth® satellite imagery (from 2007 to 2023), to analyze shoreline changes and morphosedimentary and geomorphological processes between Cape Serrat and Kef Abbed, Northern Tunisia. The Digital Shoreline Analysis System (DSAS) was used to quantify the multitemporal rates of shoreline using two metrics: the net shoreline movement (NSM) and the end-point rate (EPR). Erosion was observed around the tombolo and near river mouths, exacerbated by the presence of surrounding dams, where the NSM is up to −8.31 m/year. Despite a total NSM of −15 m, seasonal dynamics revealed a maximum erosion in winter (71% negative NSM) and accretion in spring (57% positive NSM). The effects of currents, winds, and dams on dune dynamics were studied using historical images of Google Earth®. In the period from 1994 to 2023, the area is marked by dune face retreat and removal in more than 40% of the site, showing the increasing erosion. At finer spatial resolution and according to the synergy of field observations and photointerpretation, four key geomorphic processes shaping the coastline were identified: wave/tide action, wind transport, pedogenesis, and deposition. Given the frequent changes in coastal areas, this method facilitates the maintenance and updating of coastline databases, which are essential for analyzing the impacts of the sea level rise in the southern Mediterranean region. Furthermore, the developed approach could be implemented with a range of forecast scenarios to simulate the impacts of a higher future sea-level enhanced climate change.
Read full abstract