A theoretical model is proposed in this work to study the scattering of sound waves from a serrated flat plat in the presence of a uniform flow, which is of both scientific significance and practical importance. The key contribution is the analytic and rigorous description of the scattering from the laterally periodic serrations by incorporating Fourier series expansions and the Wiener–Hopf method, which collectively give a closed-form analytical solution. To validate and demonstrate the model, a couple of test cases with some representative sinusoidal- and sawtooth-shaped serrations are studied by comparing with a commercial finite element solver. The comparisons show quite good agreement for various set-ups. The subsequent parametric studies further demonstrate the efficiency of the model and the effect of the serrations for noise control. Overall, the proposed theoretical model should be able to assist in studies of low-noise aerofoils and the silent flying capabilities of owls.
Read full abstract