A novel polymeric microcapsule was designed and synthesized using perfluoropolyether silane (PFPE-silane) as a superhydrophobic core material and ethyl cellulose (EC) as a shell material. The effects of the stirring rate and the core-to-shell ratio on the synthesized microcapsules were investigated. The physicochemical properties of the polymeric microcapsules were evaluated using scanning electron microscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, laser particle size analysis, and wettability analysis. The results showed that when the stirring rate was 650 rpm and the core-to-shell ratio was 1:1, well-distributed and uniformly dispersed microcapsules could be obtained. The results also indicated that the prepared polymeric microcapsules were spherical particles with micropores on the surface, and they had an average particle size of 165.71 μm. The EC shells could effectively prevent the thermal decomposition of PFPE-silane during cement hydration, and the PFPE-silane also exhibited excellent hydrophobicity. The specially designed structure of this polymeric microcapsule suggests its potential for enhancing the corrosion resistance of reinforced concrete structures.
Read full abstract