Diagnosing encapsulated follicular-patterned thyroid tumors like Invasive Encapsulated Follicular Variant of Papillary Thyroid Carcinoma (IEFVPTC), Non-invasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features (NIFTP), and Well-Differentiated Tumor of Uncertain Malignant Potential (WDT-UMP) remains challenging due to their morphological and molecular similarities. This study aimed to investigate the protein distinctions among these three thyroid tumors and discover biological tumorigenesis through proteomic analysis. We employed total shotgun proteome analysis allowing to discover the quantitative expression of over 1398 proteins from 12 normal thyroid tissues, 13 IEFVPTC, 11 NIFTP, and 10 WDT-UMP. Principal component analysis revealed a distinct separation of IEFVPTC and normal tissue samples, distinguishing them from the low-risk tumor group (NIFTP and WDT-UMP). IEFVPTC exhibited the highest number of differentially expressed proteins (DEPs) compared to the other tumors. No discriminatory proteins between NIFTP and WDT-UMP were identified. Moreover, DEPs in IEFVPTC were significantly associated with thyroid tumor progression pathways. Certain hub genes linked to the response of immune checkpoint inhibitor therapy, revealing the potential predictor of prognosis. In conclusion, the proteomic profile of IEFVPTC differs from that of low-risk tumors. These findings may provide valuable insights into tumor biology and offer a basis for developing novel therapeutic strategies for follicular-patterned thyroid neoplasms.
Read full abstract