Understanding the electrochemical of paseodymium ions in molten salt is essential to improve electrolytic efficiency. To elucidate the electroreduction mechanism of praseodymium ions and overcome the limitations associated with regulating the yield of praseodymium metal in the industrial praseodymium electrolysis process, the electrochemical behaviour of praseodymium on the W working electrode surface in the LiF-PrF3-Pr6O11 molten salt system was determined by square–wave voltammetry, chronoamperometry, cyclic voltammetry and potentiometry analyses. The results indicated that the reduction of Pr3+ on the W cathode is a one-step quasireversible Pr3+/Pr reduction process controlled by diffusion of the LiF-PrF3 and (LiF-PrF3)eut-Pr6O11 electrolytes at 1223 K Pr3+ in the LiF-PrF3-Pr6O11 molten salt has a diffusion coefficient of DPr3+/Pr = 0.20 × 10−8–4.11 × 10−8 cm2·s−1. The incorporation of Pr6O11 increased the electrochemical activity of Pr3+ in the LiF-PrF3 system. Pr crystallization on the W electrode was achieved by three-dimensional progressive nucleation.
Read full abstract