Leachate formation is one of the most important factors taken into account during the operation and long-term management of municipal waste landfills. Systematic assessment of groundwater and leachate contamination may be useful in selecting the appropriate method of leachate management or treatment processes. The use of indicators to quantify the contamination potential of leachate and groundwater in the vicinity of MSW could help landfill managers assess their quality. Therefore, the aim of the study was to assess the representativeness of selected indicator methods for analyzing the temporal variability of leachate and groundwater properties in the vicinity of two municipal waste landfills in a Central European country (Poland). The leachate pollution index (LPI), sub-LPI and adjusted leachate pollution index (r-LPI) were used to assess the quality of leachate water, while the landfill water pollution index (LWPI) was used to assess the variability of groundwater quality. The results confirmed that LWPI is an effective method for assessing the quality of groundwater in the vicinity of municipal waste landfills. The obtained results confirm the negative impact of landfills, despite the insulation used. LWPI showed poor quality of groundwater and visible impact of the landfill (landfill W, average LWPI - 2.34) and moderately polluted waters and minor impact of the landfill (landfill S, average LWPI - 1.37). In most cases, it was observed that two parameters, EC and TOC, are the main factors contributing to the deterioration of groundwater quality. The sub-LPI analysis showed that leachates from both landfills have a very low content of heavy metals, so they should not have a negative impact on the biological treatment process. The obtained r-LPI values were in all cases higher than the calculated LPI values. For landfill S, the average r-LPI was 26.3 (Z-1) and 25.7 (Z-2). However, the average LPI was 13.5 (Z-1) and 13.2 (Z-2). For landfill W, the average r-LPI was 14.6 and the average LPI was 11.4. Analysis conducted on multi-year leachate and groundwater data using specific indicators can help managers better understand the impact of MSW on surrounding areas and help avoid potential operational problems in the future.
Read full abstract