We describe the preparation of a new set of fluorinated sulfobetaine (FSB) zwitterionic polymers in which fluorocarbon moieties are attached directly to the zwitterionic components. An efficient two-step modification to the conventional sulfobetaine methacrylate monomer synthesis gave access to a series of polymer zwitterions containing varying extents of fluorocarbon character. FSB methacrylates proved amenable to homo- and copolymerizations using reversible addition-fragmentation chain transfer (RAFT) conditions, affording polymers with molecular weights ranging from 5 to 20 kDa and with low molecular weight distributions. Thin films of FSB homopolymers on glass proved stable to aqueous environments and exhibited increasing hydrophobicity with fluorocarbon content, as well as remarkably large water contact angle hysteresis values that enable pinning of water droplets on hydrophobic surfaces, reminiscent of the "petal effect" found in nature. FSB-containing copolymers in aqueous media demonstrated markedly reduced oil-water interfacial tension values, even with moderate (20-50 mol %) FSB incorporation.
Read full abstract