Soilorganic carbon(SOC), as the largest terrestrial carbon pool, plays an important role in global carbon cycling, which is significantly impacted by agricultural practices. However, our ability to accurately detect and predict the impacts of fertilization and tillage onSOC dynamicsis still limited. Investigating the effects of fertilization and tillage on different SOC fractions [i.e. mineral-associated organic carbon (MAOC), particulate organic carbon (POC), free POC (frPOC), occluded POC (oPOC), coarse POC (cPOC), and fine POC (fiPOC)]can aid in the understanding of overall SOC accumulation and stabilization. To this end, we evaluated the fertilization and tillage influences on SOC fractions through a global meta-analysis. We also quantified the role of environmental and agronomic factors in modulating these effects. Fertilization increased SOC fractions by mean percent change (MPC)13 %-77 %, while tillage decreased by MPC 4 %-63 %. Among them, cPOC was the most sensitive to fertilization, while frPOC had the highest sensitivity to tillage. MAOC was the least sensitive to both practices. The application of organic fertilizer increased MAOC, SOC, and POC the most (MPC 20 %-77 %), while mineral-organic fertilizer increased frPOC, oPOC, fiPOC, and cPOC the most (MPC 81 %-126 %). Fertilization in alkaline soils with warm and humid (MAT=16–24 °C, MAP>1000 mm) climate could maximally increase SOC contents from various fractions in surface layer (<20 cm depth), particularly when the altitude was 500–1000 m. However, tillage in acidic soils with low temperatures and rainy climate (MAT=8–16 °C, MAP>1000 mm) reduced the contents of SOC fractions the most in deep layer (>40 cm depth), especially at altitudes greater than 2000 m. Whether under fertilization or tillage, POC (occupying 62 %-74 %) consistently contributed more to SOC than MAOC (26 %-38 %). Overall, we suggest that SOC fractions should be prioritized over total SOC when evaluating the effects of site-specific management strategies on carbon sequestration in agricultural lands.