Hemodynamic indicators such as the averaged wall shear stress (AWSS) and the oscillatory shear index (OSI) are well established to characterize areas of arterial walls with respect to the formation and progression of aneurysms. Here, we study two different forms for the wall shear stress vector from which AWSS and OSI are computed. One is commonly used as a generalization from the two-dimensional setting, the latter is derived from the full decomposition of the wall traction force given by the Cauchy stress tensor. We compare the influence of both approaches on hemodynamic indicators by numerical simulations under different computational settings. Namely, different (real and artificial) vessel geometries, and the influence of a physiological periodic inflow profile. The blood is modeled either as a Newtonian fluid or as a generalized Newtonian fluid with a shear rate dependent viscosity. Numerical results are obtained by using a stabilized finite element method. We observe profound differences in hemodynamic indicators computed by these two approaches, mainly at critical areas of the arterial wall.
Read full abstract