Recent radar images of the surface of Venus reveal a complex and varied terrain. By applying a set of simplifying assumptions about the nature of the surfaces returning the radar signal, it is possible to make a number of plausible interpretations. In one region on Venus, several circular features have the gross morphology of degraded impact craters. If they are indeed of impact origin, these features suggest that there exist on Venus areas which are ancient and where erosion or resurfacing has not been as intense or as pervasive as on the earth. In other regions there are intriguing features that may evidence active internal processes. One is a large trough-like depression (0 degrees , 76 degrees W; measuring 1400 by 150 by 2 kilometers) planimetrically suggestive of both the Valles Marineris on Mars and the East African Rift on the earth. Another feature, about 250 kilometers in diameter and of positive relief, includes an 80-kilometer-diameter circular depression at its summit, suggestive of a large volcanic construct. A third region, near 0 degrees , 10 degrees E, contains roughly parallel ranges of mountains separated by valley-like features, with relief varying from small isolated hills several hundred meters high to low ranges on the order of 1000 meters to large mountains approaching 2 kilometers in height. If Venus has a mobile crust similar to the earth's, these mountains may have been produced by compressional tectonics. These interpretations of the radar data indicate that Venus has been a geologically active planet which has developed diverse landforms and therefore is an exciting candidate for future exploration.
Read full abstract