Image representation plays a vital role in the realisation of Content-Based Image Retrieval (CBIR) system. The representation is performed because pixel-by-pixel matching for image retrieval is impracticable as a result of the rigid nature of such an approach. In CBIR therefore, colour, shape and texture and other visual features are used to represent images for effective retrieval task. Among these visual features, the colour and texture are pretty remarkable in defining the content of the image. However, combining these features does not necessarily guarantee better retrieval accuracy due to image transformations such rotation, scaling, and translation that an image would have gone through. More so, concerns about feature vector representation taking ample memory space affect the running time of the retrieval task. To address these problems, we propose a new colour scheme called Stack Colour Histogram (SCH) which inherently extracts colour and neighbourhood information into a descriptor for indexing images. SCH performs recurrent mean filtering of the image to be indexed. The recurrent blurring in this proposed method works by repeatedly filtering (transforming) the image. The output of a transformation serves as the input for the next transformation, and in each case a histogram is generated. The histograms are summed up bin-by-bin and the resulted vector used to index the image. The image blurring process uses pixel’s neighbourhood information, making the proposed SCH exhibit the inherent textural information of the image that has been indexed. The SCH was extensively tested on the Coil100, Outext, Batik and Corel10K datasets. The Coil100, Outext, and Batik datasets are generally used to assess image texture descriptors, while Corel10K is used for heterogeneous descriptors. The experimental results show that our proposed descriptor significantly improves retrieval and classification rate when compared with (CMTH, MTH, TCM, CTM and NRFUCTM) which are the start-of-the-art descriptors for images with textural features.
Read full abstract