The range-gated laser imaging instrument can capture face images in a dark environment, which provides a new idea for long-distance face recognition at night. However, the laser image has low contrast, low SNR and no color information, which affects observation and recognition. Therefore, it becomes important to convert laser images into visible images and then identify them. For image translation, we propose a laser-visible face image translation model combined with spectral normalization (SN-CycleGAN). We add spectral normalization layers to the discriminator to solve the problem of low image translation quality caused by the difficulty of training the generative adversarial network. The content reconstruction loss function based on the Y channel is added to reduce the error mapping. The face generated by the improved model on the self-built laser-visible face image dataset has better visual quality, which reduces the error mapping and basically retains the structural features of the target compared with other models. The FID value of evaluation index is 36.845, which is 16.902, 13.781, 10.056, 57.722, 62.598 and 0.761 lower than the CycleGAN, Pix2Pix, UNIT, UGATIT, StarGAN and DCLGAN models, respectively. For the face recognition of translated images, we propose a laser-visible face recognition model based on feature retention. The shallow feature maps with identity information are directly connected to the decoder to solve the problem of identity information loss in network transmission. The domain loss function based on triplet loss is added to constrain the style between domains. We use pre-trained FaceNet to recognize generated visible face images and obtain the recognition accuracy of Rank-1. The recognition accuracy of the images generated by the improved model reaches 76.9%, which is greatly improved compared with the above models and 19.2% higher than that of laser face recognition.
Read full abstract