Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with reduced antibody response to childhood vaccinations. Previous studies have mostly focused on antibodies against diphtheria or tetanus, while fewer studies have assessed antibodies toward attenuated viruses, such as measles, mumps or rubella (MMR). Therefore, we set out to determine associations between prenatal and early postnatal PFAS exposure and vaccine-specific Immunoglobulin G (IgG) in the background-exposed Odense Child Cohort. Blood samples were drawn in pregnancy at gestation weeks 8–16 and from the offspring at age 18 months. In the maternal serum samples we quantified perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA). In the offspring serum samples we quantified the same five PFAS compounds and IgG towards diphtheria, tetanus and MMR. A total of 880 and 841 children were included in the analyses of diphtheria and tetanus or MMR, respectively. Multiple linear regression models were used for estimation of difference in virus-specific IgG per doubling of PFAS concentrations. Maternal PFAS concentrations were non-significantly inversely associated with most vaccine-specific antibody concentrations. Likewise, child PFAS concentrations were associated with non-significant reductions of antibodies towards tetanus and MMR. A significant reduction in the percent difference in mumps antibody concentration per doubling of child PFNA (−9.2% (95% confidence interval: −17.4;-0.2)), PFHxS (−8.3% (−15.0;-1.0) and PFOS (−7.9% (−14.8;-0.4) was found. These findings are of public health concern, as inadequate response towards childhood vaccines may represent a more general immune dysfunction.
Read full abstract