Traditional variance-based control performance assessment (CPA) and controller parameter tuning (CPT) methods tend to ignore non-Gaussian external disturbances. To address this limitation, this study proposes a novel class of CPA and CPT methods for non-Gaussian single-input single-output systems, denoted as data Gaussianization (inverse) transformation methods. The idea of quantile transformation is used to transform the non-Gaussian data with the goal of maximizing mutual information into virtual Gaussian data. In addition, optimal system data for the virtual loop are mapped back to the actual non-Gaussian system using quantile inverse transformation. Furthermore, a CARMA model-based recursive extended least square algorithm and a CARMA model-based least absolute deviation iterative algorithm are used to identify virtual Gaussian and non-Gaussian system process models, respectively, while implementing the CPT. Finally, a unified framework is proposed for the CPA and CPT of a non-Gaussian control system. The simulation results demonstrate that the proposed strategy can provide a consistent benchmark judgment criterion (threshold) for different non-Gaussian noises, and the tuned controller parameters have good performance.
Read full abstract