Despite the absence of tympanic middle ears, snakes can hear. They are thought to primarily detect substrate vibration via connections between the lower jaw and the inner ear. We used the western rat snake (Pantherophis obsoletus) to determine how vibration is processed in the brain. We measured vibration-evoked potential recordings to reveal sensitivity to low-frequency vibrations. We then used tract tracing combined with immunohistochemistry and Nissl staining to describe the central projections of the papillar branch of the VIIIth nerve. Applications of biotinylated dextran amine to the basilar papilla (homologous to the organ of Corti of mammals) labeled bouton-like terminals in two first-order cochlear nuclei, a rostrolateral nucleus angularis (NA) and a caudomedial nucleus magnocellularis (NM). NA formed a distinct dorsal eminence, consisted of heterogenous cell types, and was parvalbumin positive. NM was smaller and poorly separated from the surrounding vestibular nuclei. NM was distinguished by positive calbindin label and included fusiform and round cells. Thus, the atympanate western rat snake shares similar first-order projections to tympanate reptiles. Auditory pathways may be used for detecting vibration, not only in snakes but also potentially in atympanate early tetrapods.
Read full abstract