AbstractOn p. 212, Torsten Hegmann and co‐workers describe nematic liquid crystals (N‐LCs) confined in planar liquid crystal cells after doping with small quantities of gold nanoclusters. These give rise to a dual alignment mode and electro‐optic response (Freedericksz transition). By fine‐tuning of experimental conditions, N‐LCs doped with gold nanoclusters can be electrically reoriented and aligned either like N‐LCs with a positive dielectric anisotropy (used in twisted nematic displays) in a planar cell or alternatively as N‐LCs with a negative dielectric anisotropy (used in large LCD TVs based on the vertical alignment mode).We demonstrate that alkylthiol‐capped gold nanoclusters doped into nematic liquid crystals (N‐LCs) with positive dielectric anisotropy give rise to an unprecedented dual alignment mode and electro‐optical response, which has a potential impact on current liquid crystal (LC) display technologies and N‐LC optical‐biosensor design. By fine‐tuning experimental conditions (temperature, electric field, and alignment), N‐LCs doped with gold nanoclusters can be aligned and electrically reoriented either like N‐LCs with a positive dielectric anisotropy in a planar cell or, alternatively, as N‐LCs with a negative dielectric anisotropy in a homeotropic cell, both at lower threshold voltages than the pure N‐LC.
Read full abstract