The Pacific hagfish (Eptatretus stoutii) is a representative of the most basal extant craniates, and is a marine osmoconformer with an extremely low metabolic rate (MO2 = 475µmolO2/kg/h at 12°C). We investigated potential physiological trade-offs associated with compensatory changes in gill ventilation and perfusion when 12°C-acclimated hagfish were acutely exposed to 7°C or 17°C, as reflected in diffusive unidirectional water flux ([Formula: see text], measured with tritiated water: 3H2O), net ammonia flux (Jamm), and plasma ion and acid-base status. [Formula: see text] was high (~ 1.4L/kg/h at 12°C) in comparison to marine teleosts and elasmobranchs. MO2 increased linearly with temperature (R2 = 0.991), and was more sensitive (Q10 = 3.22) in the 12-7°C range than either Jamm (1.86) or [Formula: see text] (1.35), but the pattern reversed from 12 to 17°C (Q10s: MO2 = 2.77, Jamm = 2.88, [Formula: see text] = 4.01). Heart rate, ventilatory index (a proxy for total ventilation), and coughing frequency also increased but with different patterns. At 17°C, plasma [Ca2+] and [Mg2+] decreased, although osmolality increased, associated with elevations in plasma [Na+] and [Cl-]. Blood pH and PCO2 were unaffected by acute temperature changes while [HCO3-] increased. Hyperoxia (PO2 > 300Torr) attenuated the increase in [Formula: see text] at 17°C, did not affect Jamm, and had diverse effects on plasma ion and acid-base status. Our results suggest a clear osmorespiratory compromise occurring for the diffusive water fluxes as a result of acute temperature changes in this osmoconformer.
Read full abstract