Valve incompetence is a progressive disease of the venous system that may eventually lead to venous hypertension, pain, and ulcers. There is a need for a venous valve prosthesis to replace incompetent valves. Computational and experimental investigations on venous valve design and associated haemodynamics will undoubtedly advance prosthesis design and treatments. Here, the objective is to investigate the effect of venous valve on the fluid and solid mechanics. The hypothesis is that there exists a valve geometry that maximises leaflet shear stress (LSS) but minimises leaflet intramural stress (LIS; i.e., minimise stress ratio=LIS/LSS). To address the hypothesis, fully dynamic fluid-structure interaction (FSI) models were developed. The entire cycle of valve opening and closure was simulated. The flow validation experiments were conducted using a stented venous valve prosthesis and a pulse duplicator flow loop. Agreement between the output of FSI simulations and output of pulse duplicator was confirmed. The maximum flow rates were within 6% difference, and the total flow during the cycle was within 10% difference. The simulated high stress ratio region at the leaflet base (five times the leaflet average) predicted the disease location of the vast majority of explanted venous valves reported in clinical literature. The study found that the reduced valve height and leaflet dome shape resulted in optimal performance to provide the lowest stress ratio. This study proposes an effective design of venous prostheses and elaborates on the correlations of venous valve with clinical observations.
Read full abstract