Image visual quality is severely degraded due to various environmental conditions, thus, leading to the loss in image details. Therefore, an image enhancement approach is required to improve the visual quality of images. In this paper, Unsharp Masking (UM) approach based on Riemann-Liouville (RL), Grunwald-Letnikov (GL), and Riesz fractional derivatives is proposed for the image enhancement. The fractional derivatives based UM approach sharpened the edges of an image while preserving its low and medium frequency details. Furthermore, the extra parameter of fractional derivative provides an additional degree of freedom, thus, increasing the effectiveness of the proposed approach. Extensive simulations carried out on several standard images of different sizes validated the performance of proposed approach in comparison to the existing techniques. The capability of the proposed approach is further confirmed by considering the test images with varying illumination conditions. Moreover, the comparative analysis performed in terms of quantitative measures such as Information Entropy (IE), Average Gradient (AG), Measure of Enhancement (EME), etc. confirmed that the proposed UM approach based on Riesz fractional derivative outperforms the existing state-of-the-art image enhancement techniques. Furthermore, the potential of the proposed approach is validated by considering its application in the medical images.
Read full abstract