In this paper, we investigate a class of nonlinear fractional Schrödinger systems {(−△)su+V(x)u=Fu(x,u,v),x∈RN,(−△)sv+V(x)v=Fv(x,u,v),x∈RN,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\left \\{ \\textstyle\\begin{array}{l@{\\quad}l}(-\\triangle)^{s} u +V(x)u=F_{u}(x,u,v),& x\\in \\mathbb{R}^{N}, \\\\(-\\triangle)^{s} v +V(x)v=F_{v}(x,u,v),& x\\in\\mathbb{R}^{N}, \\end{array}\\displaystyle \\right . $$\\end{document} where sin(0, 1), N>2. Under relaxed assumptions on V(x) and F(x, u, v), we show the existence of infinitely many high energy solutions to the above fractional Schrödinger systems by a variant fountain theorem.
Read full abstract