The implementation of accurate positioning methods in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments has been emphasized for seamless 6G application services. In LOS environments with unobstructed paths between the transmitter and receiver, accurate tracking essential for seamless 6G services is achievable. However, accurate three-dimensional (3D) outdoor positioning has been challenging to achieve in NLOS environments where positioning accuracy may be severely degraded. In this paper, a novel 3D outdoor positioning method considering both LOS and NLOS environments is proposed. Considering the practical positioning systems, the data received from satellites often contain null values and outliers. Thus, a kernel density estimation (KDE)-based outlier removal method is used for effectively detecting the null values and outliers through temporal correlation analysis. A dilution of precision-based adaptive Kalman filter (DOP-AKF) is proposed to mitigate the effects of an NLOS environment. In the proposed method, the DOP-AKF can optimize the performance of the 3D positioning system that dynamically adapts to complex environments. Experimental results show that the proposed method can improve 3D positioning accuracy by up to 18.84% compared to conventional methods. Therefore, the proposed approach can be suggested as a promising solution for 3D outdoor positioning in 6G wireless systems.
Read full abstract