Vinyl benzyl trimethyl ammonium chloride (VBTAC) was grafted onto poly(ethylene-co-tetrafluoroethylene) (ETFE) film by γ-ray using simultaneous irradiation graft copolymerization in the presence of 2-hydroxyl ethyl methacrylate (HEMA). The structure of the ETFE-g-(VBTAC-co-HEMA) anion membrane was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. The degree of grafting (DG) of the membrane increased with total irradiation dose and VBTAC monomer concentration. The highest DG of an ETFE-g-(VBTAC-co-HEMA) membrane was 92%, which was synthesized by the treating of an ETFE film with a 0.8 M solution of VBTAC monomer in the presence of 50 kGy irradiation. Different properties of the anion membrane, such as water uptake and ion exchange capacity, increased as DG increased. The permeability and vanadium redox-flow battery performance were measured for a membrane with a DG of 92%. The average voltage efficiency, coulombic efficiency, and energy efficiency were 0.79, 0.88, and 0.70, respectively, all of which remained stable as the number of cycles increased. Open image in new window
Read full abstract