ABSTRACT Substituting waste-derived Volatile Fatty Acids (VFAs) with their conventionally applied fossil-derived counterparts in a spectrum of industrial applications necessitates its proper fractionation into individual acids. This study explored a multi-stage batch adsorption approach for fractionating acidogenic fermentation VFAs effluents from food waste (FW) and chicken manure (CKM) using Diaion HP-20 and activated charcoal. Initial screening at different washing conditions and pH (3.5 and 6.5) revealed the unwashed granular-activated charcoal (GAC-Unwashed) and milli-Q water-washed Diaion (DI-MQ Washed) as the most promising candidates for VFA fractionation of a synthetic VFA mixture at 4 gL−1. At pH 3.5 ( < p K a ), GAC-Unwashed adsorbed 2–6 carbon atom VFAs completely, while DI-MQ Washed exhibited minimal adsorption of acetic acid (AA) (8%), favoring caproic (CA) and valeric acids (VA) ( > 97%). While at pH 6.5 ( > p K a ), GAC-Unwashed selectively targeted VA (79%) and CA (100%). Fractionating VFAs from FW and CKM were conducted in a two-stage adsorption process with optimal results being achieved using GAC-Unwashed at FW initial pH (5.3) and DI-MQ Washed at pH below CKM p K a (3.5), respectively. The first adsorption stage primarily adsorbed higher molecular weight (MW) VFAs (FW:99.1% CA, CKM:72.9% butyric acid (BA)) with a minor quantity of lower ones (FW:56.5% BA, CKM:29.3% propionic acid (PA)), leaving AA intact. Subsequent stages aimed to isolate AA by adsorbing the remaining low MW VFA (FW:58.9% BA, CKM:27.8% PA, 70% BA) other than AA, indicating effluent fractionation while preserving and purifying AA. Applied selective multi-stage adsorption approach offers a promising method to broaden waste-derived VFA applications.
Read full abstract