BackgroundOur aim was to examine the roles of mesenchymal stem cell (MSC) transplantation in the repair of large uterine defects. MethodsUterine defects were created in both uterine horns of female rats by a punch instrument, and bone marrow-derived MSCs, MSC-conditioned medium (MSC-CM) or vehicle were injected into the myometrium around the defect. The rate of uterine defect repair was monitored on day 2 and 4 after operation. Cytokine array of MSC-CM was performed, followed by neutralizing antibody experiments to clarify the exact cytokine participating in the MSC-CM-enhanced wound repair. ResultsTransplantation of MSCs, but not myometrial cells, significantly enhanced uterine defect repair. The transplanted MSCs were detected in the uterine horn with no signs of rejection on day 4 after transplantation, when the MSC-transplanted uterine wound was nearly healed. Moreover, uterine defect repair was also accelerated by injection of MSC-CM, indicating the paracrine effects of MSCs on uterine wound healing. Cytokine array analysis further revealed that MSC-CM contained abundant cytokines and chemokines, among which high levels of interleukin-6 (IL-6) were found. Additionally, antibodies against IL-6 were shown to block MSC-CM-enhanced uterine defect repair. ConclusionThis study demonstrated that transplantation of MSCs could enhance uterine defect repair by paracrine effects involving IL-6, which are findings that may be applied to facilitate uterine wound healing in the removal of huge intramural masses.
Read full abstract